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Preface

* Initially, I thought the brunt of my effort on this

study would involve the architecture definition of a set of
o*Sq

silicon chips that would digitally calculate the vector

potential (A), output out of the radiation integral. It

was my understanding that this radiation integral has been

known of for many moons, so surely locating the algorithm

needed for digital implementation should have been a

"relatively straightforward process. I was told it was

being done in software, and that was really the basis for

undertaking the project, to cut down on the software

"overhead time. It was a perfect study topic choice for me,

applying state-of-the-art digital techniques to a classic

problem.

All the solutions I thought I would draw my algorithm

from use a far-field approximation that deals with at most

only two-dimensional problems. I was after a more general

animal that provided three-dimensional solutions in both

the near- and far-field regions. A rather simple numerical

summation integration scheme proved to be the best solution

"method that adequately deals with the general vector

"potential problem. Unfortunately, the vector potential is

only an intermediate value that is used in the mathematical T

process of finding the electric (E) and magnetic (H) fields

generated from a radiating antenna. Quirks that arise from

numerical techniques, dictate that it is not a wise rA
decision to try and derive E and H from the vector

11'
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potential numerically. This defines the path that follow
*o °. ..

on work should take. The numerical algorithm should solve

for E and H, not A.

Although the numerical algorithm definition stage ate

up most of the research time, I did get to spend some time

looking into the digital algorithms that perform the

required mathematical operations. I found it rather

fascinating to see how say, division is turned into a

multiplication and addition process. I think the

difficulty that will be experienced in this area during

follow on work, will be in intelligently choosing which -

algorithm to use, given the vast variety that exist for

each mathematical operation.

I'd like to thank various members of the staff here at

AFIT, for it is these people that are the key ingredients

that allowed me to achieve any success at all. Dr.

Terzouli dreamt the initial idea up, and worked with me

throughout the whole period. Dr. Pyati informed me of

Filon's method and ILt. Jost helped me with dipole analysis

and suggested I talk to Dr. Lee. Lt. Colonel Carter was

consulted early in the process and selected additional

classes I would need to adequately deal with the digital

aspect of the problem. Captain Prescott taught one of

those classes and helped me discard the FFT solution

method. Captain Linderman (computer architecture) became

interested enough in the topic to sign on as a committee

member. His expertise in the digital area was counted on

.'..
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heavily with regards to digital implementation.

Dr. Jones located the text that showed me how to do the

three-dimensional expansions. Captain Clemens worked with

5. me on the three-to two-dimensional transformation. Dr.

Quinn pointed out significant points about the digital

"algorithms. I'd like to submit a special thanks to Dr.

David Lee, head of the AFIT Math and Computer Science

department. Although incredibly busy with other matters,

he spent an extraordinary amount of time helping me work to

"a conclusion. Without his incomplete cylindrical functions

(ICF) closed form solution, I would have had no means with

which to check the validity of my algorithm.

* Finally. I'd like to acknowledge that the team effort

to produce this study noc only included the academic arena,

but also my entire family. My children (Phillip and ..-

Rachel), may not know what a vector potential is, but they

sure are familiar with "not now, I'm working on my thesis".

My wife Debra got to suffer through all the cussing and

hair pulling right along with me, she even got to type it

up. I've found the effort to be an enlightening

experience. Thanks to all those that helped me through it.
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Abstract

A classic method used to solve for the electric (E)

and magnetic (H) fields produced by a radiating source

involves first solving for the vector potential (A) through

the evaluation of the radiation integral. This study was

undertaken to define a numerical algorithm that solves for

A, so that a reduction in computation time can be realized

through VLSI design implementation.

Fast Fourier Transforms, Newton-Cotes numerical inte-

gration, and variable parameterization, were applied to the

problem with unsuccessful results. A numerical summation

approximation proved to have all the desired qualities for

the algorithm. These qualities are, ability to handle

arbitrary antennas, accurate results, and all digital

mathematics algorithms exist. Verification of the numerical

solution was accomplished by comparing the results it pro-

duced for a dipole antenna with a triangular shaped current

density against the far-field approximation, and an incom-

plete cylindrical functions solution developed by Lee.

Solution for E and H involves taking derivatives of

A. Complications that arise from numerical techniques

dictate that numerical differentiation should be performed

before numerical integration. Follow on work on this topic

will therefore have to focus on this detail before the

actual VLSI chip architecture definition stage can be

addressed.

ix
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. ..-"'. ALGORITHM DEFINITION FOR THE VLSI DESIGN IMPLEMENTATION
OF THE ELECTROMAGNETIC RADIATION INTEGRAL

Chapter I

Problem Definition / Solution / Results Overview

Statement of The Problem

In 1864 James Clerk Maxwell read his paper "A

Dynamical Theory of the Electromagnetic Field" to the royal

society (1:282). The theories he brought together and

formulated into the now famous "Maxwell Equations", have

been the building blocks for today's electronic age. The

common practice method of utilizing Maxwell's Equations to

determine the pattern produced by a radiating source

(antenna), involves first solving for a quantity known as

the vector potential (A) (2:82-87) (3:9-13) through the

evaluation of the radiation integral. The desired E

(electric) and H (magnetic) fields are obtained from the

vector potential by employing the following two equations.

,H 7X .: (1),.

- _ _ (2)

Equation (3) and Figure 1 define the mathematical

expression and geometry used for the vector potential.

. ."



-r j F - (3)

-- I

" ~k =wave number =2 r1 /X --

J(r) = current density on the antenna

4'. z

( x, y, z ) ::.

""" .IF -r ObservationI K Point• •~~~General Pit i

-qC"..5-" ? IShaped

Antenna
with Current
Density J(V')

XY

Figure 1

Arbitrary antenna and observation point
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Although the solution of Maxwell's Equations to this
point is conceptually very clear, progress past this

integral is quite painful. Analysis of even the simplest

antennas and current densities requires the solution of a

complex integral. Early solutions of the problem employed

the use of a far-field approximation (3:25). This

approximation simplified the integration process enough so

that it could be done, but left the person wanting to know

what the field was like near the antenna, empty-handed.

Many great minds have spent a great deal of time trying to

develop the mathematical tools needed to deal with this

problem. The advent of the computer in the electronic age,

is probably the big breakthrough which will ultimately

reduce the problem down to doable terms.

The 1960's saw people applying this new tool, the

computer, to the numerical solution of the radiation

integral (4:54-61). Even with this tremendous increase in

calculating power, the radiation integral proves to be more

than a match for multi-user time-sharing computer systems.

It just isn't practical to think we have reduced the

problem down to its simplest form, when it takes a day to

solve for the pattern at one point in space.

This study was undertaken to assess the feasibility of

developing a set of dedicated silicon chips that evaluates

the radiation integral (both near- and far-field) in a

reasonable time period (< minutes) for any general shaped

* antenna. The basic concept is that an operation like

3



.'.

addition takes p seconds when performed by software in a

computer. The same operation takes nano-seconds in a

silicon chip. A reduction of three orders of magnitude in

calculation time would be a significant step towards

finding the solution in an acceptable time.

The second big reduction in processing time can be

achieved by using pipelined parallel processors. As shown .'.

in (3.iI), solution of Maxwell's Equation for the vector

potential is broken up into evaluating three scalar

equations. Three parallel processors can work on the

problem at the same time, unlike the software solution that

must evaluate each equation one at a time. Pipelining is

nothing more than an efficient use of the processor's time.

The system is set-up such that the main processor's wait

time for input data is kept to a minimum.

Solution Attempt Overview

Use of Fast Fourier Transform (FFT) techniques was the

first approach tried in the attempt to embed the radiation

integral into silicon. Work along these lines was not

pursued to any great extent after a preliminary look at the

situation showed that the radiation integral's spatial

dependence complicated the process tremendously. See

Chapter II for details.

A numerical integration scheme such as Simpson's Rule

or Gaussian Quadrature was next given a try. After some

fairly extensive work in the numerical integration arena, a

4
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modified Simpson's Rule known as Filon's Method was chosen

* as the one to use.

Newton-Cotes integration schemes like Filon's, depend

on having a continuous function over the interval of

integration. Examination of Figure 1 and Equation (3) shows

that the integration of a general antenna is over a three-

dimensional surface current. The surface current is not

continuous in the three dimensions thereby eliminating

these numerical integration techniques.

Two options remained. Mathematically the three-

dimensional surface currents can be mapped onto a two-

dimensional plane (aperture) and then a continuous two-

dimensional numerical integration scheme can be carried

out. This mapping process turns the limits of integration

into functions of the variables, which makes digital

implementation of any generalized antenna impossible. The

second alternative ended up being the proposed algorithm.

It is discussed in the next section.

Although numerical integration did not yield the

solution to the radiation integral problem, some worthwhile

work was accomplished in this area. Both Simpson's and

Filon's integration equations were expanded out into three

dimensions. See Chapter II and Appendix A for details.

Proposed Integration Algorithm *. -

It was only after letting each of the so-called

"smart" methods have their chance, and failing at solving

IW V.5
S~..
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the problem, that probably the simplest and crudest method

-.-' was given a chance. The basic problem here was finding the

value of a very difficult integral. Integration is nothing

more than an infinite number of sums of the integrand.

Equation (4) shows how the radiation integral was
approximated with a finite number of summations.

The integration of the surface area is approximated by

adding up a finite number of sub-area elements A Aj.

SJ({W) e d Rj fJ J3 ("r ) e (4) r'
"'r ' d J r-l - """1~

"A�"~ = Surface area of jth element
..-j eleme

Ji(ri Current on jth surface element

rj = Distance from origin to jth surface element

The key to the success or failure of a scheme such as

this, is how small does A Aj have to be (i.e. how large

does M have to be) in order for the summation to yield

accurate results. This simple approach to the problem was

given its chance at solving the radiation integral because

the other attempts had failed, and it had the very desirable

characteristic that all the necessary algorithms needed for

digital implementation exist.

The summation approximation had made it to a point

m t- where the other methods had failed to get, comparison with

6
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a given antenna and known current distribution. A simple

"-"? dipole antenna with a triangular shaped current

distribution was chosen as the initial test case. It was a

relatively simple task to compare the summation with the

far-field approximation for this antenna. Considerable

effort was expended in locating an accurate closed form

comparison solution of the test case antenna in the near-

field region. The closed form solution proved to be unique

enough to produce a journal communication to inform others L
of its existence (5). The solution utilizes special

functions known as incomplete cylindrical functions (ICF)

to solve the integral for the test antenna. See Appendix D

for details on the ICF analysis. Chapter III details the

"summation comparison with the far-field and ICF solutions.

Summary of Results, Conclusions and Recommendations

The three solutions (far-field, ICF, summation) of the

test case antenna were coded up using Fortran 77 and the

results were compared for observation points in the near-

field, close to far-field boundary, and far-field regions.

A value for M, determined from the ball park estimate that

each sub-section of the antenna had to be smaller than

0.1 was calculated. The comparisons were conducted for

values of M less than the estimate, equalling the estimate,

and greater than the estimate.

The pleasing results of the check of the summation are

as follows. First, realistic frequencies and antenna sizes .

7
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yield reasonable values of M for the ballpark estimate.

,'. Second, comparison of the summation solution with the other

a. two, shows at least a two-digit match in the solutions for

M equalling the estimate. Higher values of M yield even

more matching digits. This may not sound too impressive

until you realize that the magnitude of the vector

potential varies by two orders of magnitude for a range of

observation points at a constant radius i from the antenna.

Put into other words, one can not detect the error in the

summation solution when it is graphed along with the more

accurate ICF solution, in both the near-and far-field "

regions, for reasonable values of M (M > 200). See graphs

in Chapter V. The numerical summation algorithm proved to

be the answer to the digital implementation of the

radiation integral. It produces accurate results in a

reasonable time period, and it can be implemented into %?."L
silicon. A-!

There are, of course, a few more details that must be

addressed, before any very large scale integrated circuit

(VLSI) design is initiated. First, solving for the vector

potential with the radiation integral assumes that the

current densities on the antenna are known, can be

calculated, or measured. This may require extensive

numerical techniques for some complex antenna shapes.

Second, as stated at the beginning of this chapter, the

"desired E and H fields are calculated from the vector

"" potential through derivatives. Work in the late stages of 7.

8 ." %.
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numerical integration, is not a wise idea. One has to be

very careful about choosing the integral length for the

numerical differentiation in relationship to the segment tV-

size used in the numerical integration. To eliminate this

problem, the next efforts that deal with this topic should

be spent examining what needs to be done to bring the cross

products inside the integral so that the summation . -4"

approximation is actually solving for the E and H fields.

Although this study did not actually develop a

radiation integral silicon chip, it has supplied the

valuable ground work needed to show that a summation

approximation of this integral yields valid results. The

stage is now set to complete the task.

.'
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Chapter II . ..

Nonusuable Solution Methods

Introduction

Fast Fourier Transform (FFT) techniques, and Newton- U
Cotes numerical integration schemes, were the first methods

tested in the search for the solution to the integration

problem. Solution from a more mathematical approach,

variable parameterization, was also considered and

discarded. Difficulties were encountered in trying to

apply these first three preliminary methods even before

they got to the stage of comparison with a given antenna

and known current distribution.

Analysis through FFT's was not discounted as unusable,

"but rather abandoned in the hopes of finding an easier

solution. The Newton-Cotes integration schemes were found

to be unusable. It was only after some rather extensive

work, that this fact was verified. This chapter explains

what was tried, and why it failed. Appendix A contains

the full three-dimensional expansion of Simpson's rule and

a partial list of Filon's method expansion. The chapter

concludes with an explanation of why a more pure

mathematical approach also fell short in dealing with the

given problem.

Fast Fourier Transform (FFT) Solution Attempt

-~.- From (2:85) or (3:11) the time harmonic non-

10
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homogeneous scalar wave equation for the vector potential

has the following form.

V R;(? + Tjj~ (5)

(i=x, y, or z)

or rewritten

The well known solution to this equation (2:91) is:

17- . F' V/(7)
-I

where:

_J • j ( -ftI:---

An almost immediate response from anyone familiar with

circuit theory, would be to say that Equation (7) looks

just like a convolution integral (6:222)

/T• / •( - -(• - ",d (9) :'-

-cx0

where h(t) is the system transfer function

If in fact Equation (7) is a convolution integral,

" then Ai() can be solved for through the following
11 A--i)



equation:

Where stands for the inverse Fourier transform.

i•; (h) & ( • are Fourier transforms of:

It was known that functions Ji(ir) and r) would not

be continuous functions, but rather discrete values derived

from a method of moments program or measurement etc. For

this reason, the discrete Fourier transform (DFT) would

have to be used in Equation (10), not the continuous form.

"For those not familiar with FFT's, they are merely

"efficient time saving DFT's.

Research was initiated in the DFT/FFT area, with the

following results. From (9:100) the basic form of the DFT

is:

rr

12
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(r) has the possibility of being three-dimensional, so

the DFT of P (r) would look something like this: -

I,- -- JKIx ÷V ' /~z F!
' Y,,.. +Y +z

(12)
r-. Iz..- • _j . _ •..:

This equation made one sit back, ponder awhile, and

ask is this really the direction to take to solve the

radiation integral problem? It was during consultation

with the study committee members (8:9) on this subject of

three-dimensional FFT's that another problem surfaced.

Iii.. The premise for choosing this path had been the fact

that Equation (7) resembled a convolution integral. Closer

examination of the quantity ( r - r' ) in (7) reveals that

it is a representation for the vector Ir - r- , not the

rotate and shift that it represents in a convolution

integral. Equation (7) is not a convolution integral

therefore, and even if it could be mathematically -

manipulated into one, the complexity of Equation (12) makes

one wonder if the time would be well spent. Solution

through the use of FFT's was abandoned at this point, in

hopes of finding a more straightforward approach to the

solution. They were not dismissed as totally unusable, but

- rather left to sit in the background while other methods

"were given their chance.

13
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Newton-Cotes Integration Schemes

The application of a well defined numerical

integration scheme seemed to be a logical step towards

solving the radiation integral. Indeed, numerous

comparisons of different integration schemes applied to the

one- and two-dimensional radiation integral can be reviewed

in the literature (10;11;12;13) as examples. The

superiority of Romberg's method (11) or a piecewise linear

rule (12) etc. have been documented for some time.

One- and two-dimensional antennas, however, are a

somewhat special breed, in that they are either line or

aperture antennas. Examination of Figure 1 shows that the

general antenna dealt with in this study is really a three-

dimensional surface antenna. This does not fit into either

the line or aperture antenna category. The analysis, or

algorithm definition of the general three-dimensional

surface antenna was therefore still open for exploration.

After some research into the field of numerical

integration, it was decided that Simpson's rule was the - -

best choice, of the various schemes available, to have the

first crack at solving the problem. All the literature

showed how the simpler trapezoidal rule scheme was less

accurate than Simpson's rule. This stems from the fact that

the intervals the integral is broken up into are linked

together with parabolas for Simpson's rule, as opposed with

straight lines in the trapezoidal rule. The parabolas more

closely approximate the actual function between the

14



intervals. A scheme like Gaussian quadrature has desirable

characteristics in that it takes fewer repetitions to

arrive at the answer, but the price to pay for this

reduction in computations is a significantly more difficult

integration scheme. This more complex integration method

is not readily applicable to the general shaped antenna.

Having decided on Simpson's rule, Equation (13), at

least as the starting point, the next step was to expand it

"out into three-dimensions.

-°A-I

+_ 1( (13)

7F

Burdon, et al. (14:172-173) showed how to perform the

expansion out into two-dimensions. The three-dimensional

expansion begins like this:

f f.

"(14)

4--
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"Each of the four terms in this expression is then

expanded out in terms of y, and then x. When the dust

finally settles, you are left with an expression with 64

(4x4x4) separate terms in it. (See Appendix A for the full

expression).

The immediate reaction to the conclusion of this

expansion is that the feasibility of such a scheme is

certainly in doubt. Work was nevertheless carried on, due

to another concept that was believed to be true at this

point.

It has already been stated several times, that for the

general antenna, the current on the antenna really just

maps out a surface in three dimensions, see Figure 2. It is

quite easy to see from Figure 2, that the three-dimensional

integration is therefore filled with a large number of

zeros. Close examination of the 64 term expansion reveals

that 56 of the terms deal only with the outside corners,

edge lines, and surface planes. The eight remaining terms

are triple summations, that take care of the volume inside

the outer box. It was believed at this stage, that if one

could perform a volumetric integration filled with zeros to

get a surface area, one could also carry out the

integraLioci with the constraint that the surface current

of interest must fit inside the inner box. The feasibility

of developing a processor to handle the eight terms was
r _

realistic.

16
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General antenna in three dimensions

Before work got to the point of actually trying

Simpson's rule out on the radiation integral, an inherent

characteristic of the integral was pointed out that

eliminated this integration scheme from the running. The

problem has to do with two terms in the integral, namely

the current density J (r) and the exponential eJ k r. The

exponential is really just a combination of sines and

cosines (through Eulor's identity), so essentially you have

a current times a sine or cosine in the integral. When

realistic values are inserted for these terms, one finds

"that the sine and cosines have the potential of oscillating

much more rapidly between the limits of integration, than

17 r
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the current. If accurate numerical integration is to be

accomplished, extreme care must be taken when choosing the

sub-interval width. It has to be small enough to

adequately sample the faster oscillating sines and cosines,

see Figure 3. The use of Simpson's rule was therefore

ruled out due to the large number of sub-divisions the

integration had to be broken up into.

_/ I ""

(siner r- I

I,.
:" ~~~~cosine k I•-rI 1"i

Integration __ h
interval - I' h
width I h

2

Figure 3

Slow and rapidly oscillating terms in integral

A. C. Ludwig (10) discusses this problem, and points

to the solution. The problem is not new, in fact has been

addressed and solved by Filon (15;16) back in 1928. Kopal

(17:409) states that Filon's method is just a modification

of Simpson's rule where the 2/3 & 4/3 coefficients are

replaced with other coefficients and appropriate multiples

of the end points are added in to compensate for this

,.. - particular type of numerical integration problem. Allen

(13:390) was aware of this method and, in 1959, conducted a

18 r



comparison of Filon's method with other schemes for the

"one-dimensional case. He points out that the method works

well, and talks about an expansion into two dimensions.

An expansion into three-dimensions was needed for this

• study. This was where the experience gained in the

"Simpson's rule expansion was put to use.

"Equation (15) shows the expression used for ...j

expansion. It is a combination of that shown in Kopal

(17:408) and Burden et al. (14:172). Filon's equation

takes on a slightly different form, depending on whether

"there are sine or cosine terms, Davis et al. (18:63) was a

useful reference for the f (x) cos (mx) form.

"" ~hi [< f(&,cos~mc,,' - f(b'cosr,-.c" +
o(. C 0 5 ;) ::=! 4

"+ 7Yo '+(1

• yo- 19kZ 2:, -¾ - Y ;,. ", ...

a. " . - •

.. .. . .. . .. . .. . . .... .
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The basic expression now has six terms, so the three- --

* dimensional expansion has 216 terms (6x6x6) (See Appendix
I

A). This of course is really stepping out of the

feasibility realm, until you realize that 208 of these

terms are once again dealing with the outside box. The

analysis of the problem had progressed to the point where

it was once again dealing with eight triple summations that

were weighted with coefficients that had been proven to

work for the one-dimensional case.

The next step, and ultimate stumbling block, was to

test the idea of throwing away the outside box terms. To

keep the process as simple as possible, the concept was

tested out on the following integral, Equation (16), not

"the radiation integral.

S-16)

_:J - -: ... "-..

a..%

Figure 4a is a graphic representation of this expression.

The cos ( 7rz/2) term simulated the slowly varying current

density, and the cos (kz) term was the rapidly oscillating

term.

-- 4

• .- .. -- .-,
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Cos F(I)

a,7

C." 0,

Figure 4a Figure 4b

Simulation with Simulation with
f(a) equalling f(a) not equalling
zero at end points zero at end points

The terms of Filon's integration method that dealt

with all but the endpoints were coded up using Fortran 77

and the resulting answer was compared with the closed form

solution for the same interval (-l+h to 1-h). The two

answers were within 3% of each other, a promising result.

It was then noted that the parts of Filon's solution

that were being thrown away, the end points, 'were in fact

equal to zero. Not much of a check to throw away zero, so

another, more useful check, was devised to check the basic

concept validity out. Equation (17) is the expression for

the new test case pictured in Figure 4b.

SC -• -; " - , . . ,(17) V

V. r
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The Filon method minus the end points was once again
Scoded upwith Fortran 77 (see ApedxB), and copae

with the closed form solution. The two solutions were in

complete disagreement. The final straw that broke this

concept's back was a comparison of results of the full

Filon expression (end points included) to the closed form

solution for the full interval (-l to 1). The results

agreed to within 2%. This obviously said that when you try

and throw away non-zero end points, the concept falls

apart. Once this point had been verified, an explanation of

why the concept broke down was sought.

First of all, a basic operation of integration,

established in any calculus I class, is that it finds the

area under a curve. If the function between the end points

fluctuates up and down, a cancellation of the positive and

negative areas occurs, except at the end points. This

accounts for the large error in the shortened version

(without end points) of the numerical integration scheme.

Ironically, it is at the two end points where all action is

taking place.

Secondly, a Newton-Cotes integration scheme is based

on having a continuous function between the limits of

integration. Throwing away the end points, and then trying

to use the formula that was developed with the end points,

forces the integration method to operate on a discontinuous

function, which just won't work. This simple one-

* .dimensional test case had shown that it was going to be

22
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impossible to try and use Filon's method, or any other

Newton-Cotes integration method, because the antenna

current density is discontinuous in the three-dimensional

volume of integration.

Mathematical Solution

So far, only the elimination of possible solution

schemes had been accomplished. The Newton-Cotes integration

idea had been shown to be unusable. The Fast Fourier

Transform technique had been put on the back burner due to

the level of complexity.

Consultation with a number of individuals (19,20,21)

had taken place during the course of work up to this point.

Due to the nature of the problem, most of the people

solicited for advice, had been mathematicians. Each of

them, after an initial introduction to the problem,

suggested the same basic solution. The obvious solution, as

conceived by any pure mathematician, was to simply map the

three-dimensional integral onto a two-dimensional plane

(aperture). See example in Figure 5. The integral equation

would then take on a form similar to Equation (18).

A/ ^ k(1 r(),L.

- F~u'°- "..

. i - . , , ; I
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J, x

Figure 5

Mapping of three-dimensional surface to two dimensions

Equation (18) is not intended to be an entirely

correct mathematical expression, but merely serve as an

example expression that illustrates the following point.

The limits of integration tl, t2, t3, t4, are no longer the

simple constants they were for the three-dimensional cube

approach, but rather functions of the new parametric r

variables ul and u2. That's fine if you have a nice

mathematical expression for the shape of your antenna, but

one usually finds it very difficult to define that

expression for any given general shaped antenna. Indeed,

for realistic complex geometry antennas, it is virtually

impossible to come up with the equation of the antenna.

"Also note the parabolic dish antenna depicted in Figure 5

24
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r
maps very neatly on to a circle. Another antenna may not

map into a circle, but rather an ellipse or a square or

some arbitrary shape. It should be fairly clear by now,

that what appears to be the obvious mathematical answer to

the problem, eliminates the ability to handle general

shaped antennas. This ability, was one of the many

underlying goals of this study. The silicon chip processor

would be very limited and of questionable use, if it could

only handle say, parabolic dish antennas. For this reason,

this solution concept was abandoned, and work was directed

towards the fourth and final solution approach.

The reader may wonder, why this chapter exists, when

quite frankly the concepts discussed and methods tried
r

didn't solve the study problem. There are several reasons.

First, a good deal of effort was expended in expanding

Simpson's rule and Filon's method into three dimensions.

Although the resulting expressions (in Appendix A) could

not be used for the basic radiation integral, it is felt

that there is a possible use in other three-dimensional

"integration problems.

An even more important reason, is to document a grave

conceptual error, that led a number of people down the

wrong path for much too long a time. It's easy to sit back

now and say, well why didn't you try throwing away the end -x

points with Simpson's method, long before you spent all the

effort on Filon's method? That question pinpoints the

.Z.r7.. reason for including this chapter. That is, it is very

25



easy while wrapped up in the furor of trying to adapt a

well-established method to the details of a given problem,

to neglect the basics. It is even possible to devise a

check of the concept or method employed, which in itself is

in error.

Finally, what may seem to be the obvious solution to

some, may in fact totally change the scope of the problem.

The mathematical solution did not adequately deal with the

general problem. L

26
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Chapter III

Proposed Algorithm Definition

Introduction

Figure 6 shows a general shaped antenna, that has been

divided up into a number of sub-area elements, &Aj.

z

-- • (x,y,z)

Observation
Point

r

Figure 6

Sectioned general shape antenna

The numerical approximation solution to the radiation

integral uses these sub-area elements as follows:

,t r>T r>
.r • '- . .. • ! - -- _ • _ ' •(19 )
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The concept of why the triple integral goes down to a

"" :single summation can be explained by first looking at the

solution of the ideal dipole (3:14).

In the ideal dipole case, the length of the antenna,

L, is much, much smaller than either the distance rc or

r- ri see Figure 7.

y
(x,y,z)

L/2 r -r
_12 Observation

Point

rr

L x

Constant
Over Length
"Of Antenna

.. - ~L/2 ,":

Figure 7

Ideal dipole

I r - r' and r are therefore essentially the same

magnitude. This greatly simplifies the radiation integral,

because all but the differential, d z, can be brought

outside the integral sign.

V. U

"Ft1 f ,.- (20)
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Thus

S-J ki l

R___________t L(21)

(with IP - r I - Ir)

The basic concept to be gleaned from this analysis, is that

the integration process is transformed into a simple length

integration.

For the antenna depicted in Figure 6,1 r -r is not

approximately equal to Irl, so the manipulation of the

general integral does not follow that of the ideal dipole

exactly. The concept that is borrowed from the ideal

analysis, is that the integration is treated as a simple

area integration for the general three-dimensional surface

antenna. Of course, if the antenna is one-dimensional, the

integration translates out into a length, as it did with

the dipole. The area integration can then be approximated

as the sum of all the sub-area elements AAj (or sub-length

elements Ahj). The accuracy of the approximation is

brought about by making A Aj, small, and associating the

correct Jj and rj with each element.

It is quite easy to see, that this approach uses the

simplest of numerical integration schemes. From Chapter

II, recall that the so-called "smart" numerical

integration schemes (Newton-Cotes) required a continuous

function over the interval of integration. This basic

29



numerical integration adds up the sub-elements to produce a

length, area, or volume. The radiation integral represents

line currents, or surface currents that reside in three
dimensions. This simplistic numerical integration scheme

doesn't care if the function is discontinuous in three

dimensions, it simply adds up what you give it. The

current and either area or length magnitude inputs can be

obtained from a numerical technique like a method of

moments program, or measurement.

This approach to the solution had not been given

serious consideration initially due to its crudeness. It

was now the front runner because it had surpassed all the

hurdles where the other methods had failed. It also looked

• "".. like a very promising approach in terms of implementation

into a silicon chip. All the necessary algorithms needed

for the transformation exist and are well studied ( see

Chapter IV ). The time had come to see if it could proceed

on, namely, how did it perform when compared with a known

solution to a specified antenna?

Test Case Antenna

It appeared that the numerical solution was capable of

producing the answer for the vector potential of any

general shaped antenna. The big question left to be

answered was, how small did A Aj have to be, i.e. how large

did M have to be, for the summation to closely approximate

the integral? A test case antenna with a known solution was

30



required to answer this question. The one chosen is shown

in Figure 8.

•- '

mI L/2 •) = 1 - 2z/Observation ,.

F •I Fgr8

h~~ Poi-nt'J• =1+ zL -

,..Test antenna and current distribution ,

:'-" It's the next simplest to the ideal dipole, a finite

,¢.:'",.length antenna located on the z axis. The analytic ;-

S.... triangular shaped current distribution was chosen for two .

'.":2 reasons. One, it is a more complex distribution than a .-

:..:. simple uniform distribution and two, the exact closed form -

""• ~~solution was located. Location of a solution for the far- :"-

":""• >•'-" field case was of course, relatively easy, as it has been

31
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well studied and documented in almost any text on the

subject. The near-field solution presented the problem. 9

Even when it is addressed, such as in (2:285), the

resulting solutions that are given, are the E (electric)

and H (magnetic) fields, not the vector potential (A(r)).

This study was interested in solving for the vector

potential first, with the belief that the appropriate

mathematical operations could be performed on A(r) to yield

E and H. The closed form solution located for the near-

field comparision of the vector potential uses special

functions known as incomplete cylindrical functions (ICF)

(5,19,Appendix D). The expression for the vector potential

is manipulated into an appropriate form and the ICF handle

is cranked to yield A(P). E and H can also be solved for

"by taking the appropriate derivatives of the ICF's. The

literature search for the near-field solution, found no

other such solution. An IEEE Transactions on Antennas and

Propagation communication (5) was therefore submitted, to

"inform others of this particular vector potential solution.

The remainder of this chapter details the steps taken

for the three solution methods. Results of the comparison

of the numerical method against the far-field and ICF

solutions is documented in Chapter V. The simple answer to r

the question, how did it do, is that it did very well forI..-...
very reasonable values of M.
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Numerical Solution of Test Antenna

In the manipulation of the vector potential expression

into the ICF form, it was first necessary to solve for

A(i) with a uniform current distribution like that shown in

N Figure 9.
z Observation

Point

"-"(x y z)71

".- Figre

r r-
prdcdfo oh the J(zu) aia

;.•i'• ~Figure 9 i"

.•." °•" Uniform current distribution ""

current densities was solved for by each of the three

methods, numerical, far-field, and ICF. This additional

comparison of two current densities helped to insure that

there were no hidden properties of a given current density

that made the results of the test appear promising.

For the numerical solution, the dipole is first

. prdivided up into M sub-elements (See Figures 8 or 9).

Each segment is assigned a uniform current distribution

33
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equalling the magnitude of the actual current density at

the middle of that particular segment. This is a trivial

step when the current density on the dipole is itself L

uniform. . .'.-

The next step is to calculate the magnitude of the

vector from the origin to the middle of each particular

segment. This is the r vector used to calculate I r - r •

For the numerical solution, the vector potential takes on .-

the following form.
-i z=

RJP e5 (22)
_ , - . II'--

h = L / M = length of sub-element

J = current density at center of each segment

=1 for uniform current density

ij =vector to center of each segment

-L/2 + (h x j) - (h/2)

The particular values chosen for the test are the

following:

L = 1 meter

k = 63 which equates to

X = .0997 or f = 3.008 GHZ

Simplification: Let observation point be located in
the y z plane (i.e. x = 0)
This is allowable due to the inherent
symmetry of the antenna with respect
to the z axis.

34
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Limitation: Make comparison in first quadrant
only. Allowable once again due to
antenna symmetry.

The expression was coded up in Fortran 77, and the

resulting solutions for different values M were compared

with the other two method's solutions. A copy of the
r

Fortran program is included in Appendix C. The name of the

program for the uniform current density is UNIFLD. The

complex function routine SUMFLD, in the program was used to

calculate the numerical solution. Chapter V discusses the

results of the comparison.

A simple modification to the program was required to

solve for A(F) with the triangle shaped current density

(see Figure 8). For the uniform case, Jj had a magnitude

of one. jj took on the following form for the triangle

current density.

I - L/ (23)

(where =z absolute value of the Zvector)

Program TRIFLD, in Appendix C, was used to solve for

the triangle shaped current density. Calculation of the

above Jj term, was the only modification needed to change

the uniform density SUNFLD function routine into a triangle

density solution.

It should be noted that both programs, UNIFLD and

TRIFLD, are set up to solve for A(r) at a radius r from the

origin over a range of angles 0 9 is the angle measured

35 oJ.
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down from the z axis to r.It is much more meaningful to

check the solution out over a range such as this, instead

of just at one point.

Far-field Evaluation of Test Antenna

Conditions necessary to meet far-field requirements

are as follows (2:24):

r >2 L2/ X

r >> L (24)

r > > A

The far-field approximation of the radiation integral

was solved with the aid of Fourier transform techniques

as follows:

Standard 0
Fourier ( 3  fXt

transform XW f t)e d t (25)
integral
form

Far-field--
radiation Yk(
integral ~ .C'~(26)

(3:25) 1- L'~

Al/

-. (28)

Z C 0S (29)

let: .jr(0
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L~a k Z COS E

• .. F r. LId(

Vf

let: -'-k C-e (32)

"-.3

-j LK • ..

thus:

ji [ z)

where [ J stands for the Fourier Transform

The Fourier transform of the uniform current

"" distribution is:

with
simplifications: L 1 x 0

-.• • ' ] - L i,,• , L .. / 3 ) ,..-..

,., I -- 1 .. -" I
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For far-field

Sr> ZLkX 0 .> 2.0.05 meters (37)

Function routine FARFLD in program UNIFLD (Appendix

C) was used to evaluate this expression, for different

values of r. See results in Chapter V.

The same technique was used for the triangular shaped

current distribution. Of course, the Fourier Transform of

the current density took on a new form:

"5!N= [LL-) 1(38)
"(U.L/H) q

The expression for the vector potential, with the same

simplifications as stated before was then:

-'C +"_ )(39)

Program TRIFLD contains the function routine FARFLD, which

was used to evaluate this expression.
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(ICF) Solution of the Test Antenna

The A(i) expression can be written as follows.

(Refer to Figure 8).

e d' +

0 ... jkY 2 +zZ

fe+
L I ýT

~IL4 '/2+

(with x =0)

To show how the ICF solution goes, let's take a look at 3

_____ _____ ____(41)

39



Let u = z - z, then

f(42)

Let u = Y t, then

/~_ -

e (43)

SII+

Let w I++ ,then

II+ ( /-J K"'ý w"'"

I (44)

Through these changes of variables, de have

transformed the integral into an incomplete cylindrical

form. From Agrest and Maksimov, the ICF form is (22:23):

2 ._ (45)

'_ P o ",,

2 " ~ - ~ ' 7(46)
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A

"with 0

- -- '. -o ",____

_____-_ dt (47)c-

and z = -ky for integral I1

Following the development of Agrest and Maksimov farther,

the form is finally written as follows.

4- :,- Lr J 4.

Jo ::

"2--2-: , E 7 j -;c . C• ., (49)

This explains how the basic piece of the puzzle for

the ICF solution fits into place. The next piece is laid

in as follows. It involves the evaluation of the next term

in Equation (40).

L/; -- ,l'' --. z '4..

- " _ " , _ ,-.-

(50)

LI-. -;,.' '".-.

,".{"° o°- ; -" I

IF.
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.- Let u = z - z

U--
0u e (51)

"Let t =Y + ;/

_..T2 - "Z • • ..•, • --rl(52).....-.-

- Z,

So 12 boils down to a trivial integral plus z times II-

A similar progression of steps reveals that the other

two terms in Equation (40) can be evaluated with the .

expressions for I1 and 12 with the insertion of a negative

value for z.

This is only the preliminary work involved in the ICF

"solution. It is included here to show how the A(r)

expression is transformed into the ICF form. The earlier

statement about needing the uniform current density

solution (Ii) is also clarified.

Refer to Appendix D for the remaining steps necessary

for the ICF solution. In general terms, the ICF solution

used for comparison, is an asymptotic expansion that is

restricted to a limited portion of quadrant I (15 < e

"*. 70). It turned out to be an extremely useful solution -
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even with this restriction, because it supplied accurate

values for A(r) in both the near- and far-field regions.

In the program UNIFLD (Appendix C), the complex

function routine I, was used to evaluate the uniform field

ICF solution. This was accomplished in two stages, once

with a positive value for z, and then again with a negative

value. This was done to solve for the current densities

both above and below the Y axis, as mentioned before. The

necessary additions to function I1 were added in program

TRIFLD (Appendix C, to solve for the triangle distribution.

L-."
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Chapter IV

Digital Implementation Aspects

Introduction

As with most endeavors embarking on a journey down an

unknown path, what is thought to be at the end of the path

at the start, may not be there at all. It was certainly

the intention at the beginning of this study that the

subject area of this chapter would make up the bulk of the ...

work. Only a minimal amount of time however was spent

looking into the digital implementation aspect of the

problem, due to the effort that was required for the

algorithm definition stage.

"Most of the time that was spent involved a literature

"search, looking for the digital algorithms that are needed

for the various mathematical operations performed in the

radiation integral. This chapter is included more as a

source of references for the person carrying on the work

for the VLSI implementation of the radiation integral.

Although this study didn't get intimately involved

with this aspect of the problem, a good deal of work has

been accomplished on the subject by an Air Force Institute

of Technology Computer Systems Architecture class (23).

The class produced six reports on the digital design

aspects of the problem. Anyone interested in reviewing a

more indepth treatment is advised to seek out these reports.
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"Arithmetic Operations Required

A quick glance at the numerical summation solution

shows that some very basic mathematical operations are

required.

R • r • ••j e(53)

They are:

multiplication -
division•'"" e xponent ial1

magnitude I-

These operations pose no problems whatsoever for the

person programming A(i) on a computer, as was done for the

test of the algorithm. How are they accomplished when you

"don't have the well-established computer language to work

with? The language is of course using some form of a

digital algorithm to perform the operation. Knowledge of

these algorithms was what was required for the digital

implementation of the A(r) numerical expression. Each

operation is addressed in the following text.

Multiplication.

Multiplication is probably the most studied and

advanced area of all the digital operations next to

addition. Only a minimal amount of effort was expended in

this area because it was known that there is an abundance

of material from which to draw. Already existing floating

point processors like (24) are probably the most logical
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place to start when the final algorithm definition stage is

arrived at.

Division.

Division is a much more costly operation in terms

of computation time. The literature search located

numerous schemes, (25;26;27;28;29;30;31) devised to most

efficiently and accurately perform the operation. They

range from the simplest, Newton-Raphson iteration

(31:278), to quadratic convergence (25:49), to carry look-

ahead array dividers (31:296). All the schemes turn the .,

division into some form of multiplication and division.

The time spent in this area of the digital math produced

the following results. The simplicity and directness of the

SNewton-Raphson method made it a desirable approach to

use. A good deal more time and effort is required to

understand the other methods at the same level in order to

make a meaningful comparison. Unfortunately that time was '

not spent during this study, so no recommendations can be

given. It's conceivable, as a matter of fact, to spend an

entire study effort testing out the various methods in

relationship to the numerical radiation integral solution.

A good place to start is with the class project reports.

Exponential.

The first algorithm found to evaluate the

exponential (32:71) was a polynomial expansion. After

working with the expansion, it was noted (33) that due to

the complex nature of the exponential, the expansion was
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the combination of the expansions for the sine and cosine

functions. With this realization, a more efficient

algorithm known as the Cordic Trigonometric Computing

Technique (34:330) was investigated.

Reference (35:1283) goes into an actual hardware

build-up of the Cordic algorithm. Reference (36:144)

updates the 1959 algorithm for modern VLSI applications.

All the research done in this area points towards breaking

the exponential up into sine and cosines, then using this

Cordic algorithm to perform the operation digitally.

Magnitude.

Calculation of the magnitude of vector Iir- ,

boils down to a combination of addition, subtraction,

multiplication, and a square root:

S X- ') (54)

The square root algorithm was the last one to seek out in

order to have a full set of digital algorithms that

performed the math of the A(r) numerical expression.

"Initial findings of this search found that the square

"root function can be evaluated with the Newton-Raphsonf

method in much the same manner as division. The method

goes like this:
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Bas ic Newton-Raphson
formula to find the____(5
root of an equation -- ___

(37:463) (55

where: f(x) y =f(x) Tangent
Line

Figure 10

Approximation of f(x) =0 with tangent line

Now look at square root

Want:

R X (56)

To put into Newton-Raphson formL

Let: < -/ 2 y) ,where . ,approaches zero

over the progression of steps. I

then:
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thus:

X. + (58)

Once again, a seemingly difficult process such as a

square root, has been converted into an addition and a

multiplication. The only complication is that care must be

taken in assigning the first guess x0 , so that the process

converges down to within an specified E away from the

actual answer. The method is straightforward to implement

digitally. Other methods exist (38;39) as examples, that

are probably more efficient. Locating an algorithm to

perform the math digitally is not the problem, but rather

choosing which one to use. The similarity between the

divide algorithm and the square root algorithm does not end

with the Newton-Raphson scheme, so the research

accomplished for division will also be useful for the

square root.

General Processor Block Diagram

This chapter would not be complete without some

mention of the basic digital architecture that the

processor will assume. The algorithms that perform the

math will have to have someplace to call home, and will ,

have a significant role in defining what home looks like.

Figure 11 shows the basic concept.

The first thing that probably catches one's eye, is
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what is this host computer? There is no need to reinvent

the wheel and design a complete stand alone computer that

evaluates the radiation integral. It is more prudent to

design the A(r) processor so that it will work in *. %

conjunction with an existing computer unit. This computer

unit might be as sophisticated as a large main-frame, or as

simple as a microprocessor. This is a question that will

have to be addressed in the digital implementation stage.

The duties of this host computer will include such things

as: loading the A(r) processor's memory with the current

densities, point locations,and wave number; plotting out

graphs.

Host
Computer Memory

Dat
Begin Done Data

Processor I Arithmetic

Control Lo

Unit Unit

Figure 11

Basic Processor Block Diagram
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The memory unit is quite simply just that, the storage

location for all the data inputs to the processor. Even

through simple sounding in concept, there are several

questions to be resolved here also. First, what is the

size of this memory? That question can't be fully answered

until the accuracy of the final A(F) processor, or more

realistically the E and H processors, is defined. Accuracy

and memory size go hand in hand because the number of sub-

divisions the antenna is broken up into is a direct measure

of the accuracy of the solution. Based on the answer to thL.

size question, the question of where does this memory

physically exist can be investigated. Is it part of the

host computer, or a separate memory box built in conjuction

with the A(P) processor?

It only makes sense, that on board the processor unit

are the smarts to take over control of the calculations,

once the host has said the memory is loaded, begin. The

control unit will take charge of the operation, and direct

the arithmetic/logic unit (ALU) in the calculation of sines

and square roots, etc. Two of the basic time-saving

concepts are to pipeline parallel ALU units. The control

unit will be in charge of these operations. Calculation of

the various values in the magnitude calculation, such as

(x - X)2 etc, can be accomplished for successive parts of

the antenna, while the square root processor is working on .'.

a specific point. These values can be stacked up in the

pipeline awaiting their turn in the magnitude processor.
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This is just one of the examples of how pipelining can be

used to speed up the calculation.

The basic electromagnetic nature of the solution has

broken the calculation up into three scalar equations

(3:11), one each for the x,y, and z space coordinates. It

will therefore be likely to have the one control unit in

charge of three separate/parallel ALU units.

Going still deeper to take a macroscopic look at the

ALU units, one will find a noteworthy beast. Addition and

multiplication form the basis for all the mathematical

operations needed for the calculation of A(i). A decision

based on a time versus cost analysis, will have to be made

about the parallelism of the ALU unit itself. It can

- consist of one unit that performs the necessary steps one

at a time, or a number of mini-processors that evaluates

"the sine, magnitude, etc. in parallel.

There are still a lot of questions to be answered,

even though many problem areas have been examined. With

regards to the digital implementation aspect, it appears

that all the mathematical operations can be performed quite

easily with the basic algorithms. A good deal more effort

will be required to pick and choose the most efficient

algorithms to work in conjunction with the pipelined

parallel processors to yield the final solution. Before any

indepth work can be accomplished in this area, such as

number representation or register definition etc., the

S,---. algorithms that solve for the E and H fields must be
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defined. See the recommendation section of Chapter V for a

full explanation.
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Chapter V

"Results, Conclusions, Recommendations

Comparison of Results

Table I and Figures 12 through 15 (this chapter) show

representative results obtained from the triangular current

distribution. Tables II through XIV (Appendix E) list

results from both the uniform and the triangular

distributions for different values of M and r.

The comparison was conducted in a limited portion of

quadrant I, at various distances r, from the origin.

Values for A(r) were calculated at the radius •, that

swept over the test range, in increments of the angle 0

S(150< 0 < 70'). Ois the angle measured from the z axis down "

to the radius vector r. This limitation was brought on by

the complexity of the ICF solution. The ICF solution

turned out to be fairly expensive in terms of work

involved, but was an extremely useful closed form solution

to have for the comparison process. The nature of the

solution required that the space the antenna radiates into

be broken up into a number of asymptotic regions. It was

decided that only the asymptotic expansion of the ICF for

the above portion of quadrant I was necessary, because the

symmetry of the antenna made the solution of A(P) in the

other quadrants mirror images of quadrant I. This portion

of quadrant I was more than an adequate test range to make

,-.'-"-.~ or break the numerical solution. A check outside this
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region, 0 equal zero degrees, was also conducted to make

sure the numerical solution responded with the expected

result. The vector potential at this observation point is

zero, and that is exactly what the numerical solution

produced.

The check of the numerical approximation against the

other two solutions was accomplished by comparing the

number of matching digits of the magnitude values of A(P)

for different values of M. The comparison was accomplished

in this manner, because once M was sufficiently large

( M > 200 ), it was virtually impossible to graph the

differences over the dynamic range of 9 tested. It also

did not seem appropriate to convert the comparison values

"into decibels (dB's), which is a common practice in

similar studies, as the numbers represented the vector

potential, not the E or H fields.

More attention was paid to the results of the

comparison conducted for the triangular distribution. This

was based on the thought that the triangular distribution

provided a more complex and realistic study upon which

to judge the test. Results from the uniform distribution

were used more to check the trends noted from the triangle

distribution.

There k-)ere several areas of interest: how, large did M

have to be to yield accurate results; what were accurate

results; did the numerical solution work in both the near- -

and far-field regions? A ballpark estimate of how large M
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has to be can be obtained by making sure that h (h = L / M)

is less than one tenth of the wavelength (h < .1 )

radiating from the antenna. For the values used in the

test case (X "-.1 meter), the estimate figured out to,

h <.Ol meter, or M > 100. Tests were therefore run with

values of M equalling 50, 100, 200, and 500. Sure enough,

results from M = 50 were poor, marginal for M = 100, and

reassuringly accurate for M = 500. Accuracy here meant a

match of approximately three digits between the A(r)

magnitude values of the numerical solution and the ICF

solution. This is a rather simplistic approach, but will

be born out in the recommendation section as an adequate

measure for this stage in the development of the processor.

The final check of the numerical solution, was to see

if it worked in the near- and far-field regions. A check of

Tables I and X shows that when M is sufficiently large, the

numerical solution yields just as accurate results in close

to the antenna as it does in the far-field region.

The far-field solution was the first form of a

comparison solution secured, but was limited to the far-

field, and experienced phase error around the null points.

What might have been thought to be an error in the

"numerical solution at these points was sh~own to be a far-

"field error with the aid of the ICF solution. The far-

field solution was therefore only used as an initial check

of the numerical and ICF solutions, to see if they were on

".. the right track.
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Table I

-- - - - - - - - - -- - - - - - - - - -- - - - - - - - -

MAGNITUDE OF VECTOR POTENTIAL

TRIANGULAR CURRENT DISTRIBUTION

R ~ 50.0 M= 200 K= 63.

THETA FAR- j ICF jNUMERICAL
(DEG) FIELD I
15.0 0.7748E-06 I0.7752E-06 I0.7746E-06
18.0 I0.1573E-05 I0.1574E-05 I0.1564E-05
21.0 I0.2620E-05 I0.2621E-05 I0.2613E-05

24.0 I0.3606E-05 I0.3607E-05 I0.3591E-05

27.0 I0.3997E-05 0.3997E-05 J0.3984E-05
30.0 0.3304E-05 j0.3302E-05 j0.3288E-05

33.0 0.1638E-05 I0.1636E-05 I0.1630E-05
36.0 f0.1497E-06 I0.1877E-06 I0.1868E-06

39.0 0.5458E-06 I0.5746E-06 I0.5674E-06
42.0 0.3347E-05 j0.3351E-05 0.3342E-05 L
45.0 0.6289E-05 0.6286E-05 I0.6269E-05

48.0 J0.5771E-05 I0.5762E-05 I0.5747E-05
-s51.0 0.1774E-05 0.1778E-05 10.1775E-05

54.0 I0.2570E-06 I0.5693E-06 0.5704E-06

57.0 0.6069E-05 I0.6087E-05 I0.6080E-05
60.0 0.1283E-04 I0.1281E-04 I0.1280E-04

63.0 J0.9049E-05 0.9012E-05 j0.9006E-05

66.0 0.2915E-06 I0.1180E-05 j0.1181E-05

4'69.0 0.8882E-05 I0.9064E-05 I0.9060E-05r
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Triangular Current Density
1.-R =50.0 meters *M =200
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Figure 12
Magnitude of Vector Potential (Far-Field)
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Triangular Current Density
R - 50.0 meters, M = 200
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Triangular Current Density
R = 50.0 meters , M = 200
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Triangular Current Density
R = 50.0 meters , M = 200
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Conclusions

These were satisfying results. First of all, the

solution worked equally well in both the near- and far-

field. This was one of the major constraints stated back

at the beginning of the project. Secondly, the solution

was spilling out accurate results for peanuts. A value of

500 for M was well within the realm of feasibility. Even

the software used for the test had no time difficulties

with M at this value. M could certainly be increased by

an order of magnitude to yield even more accurate results,

and experience no major time problems.

The method once too crude to even consider, had come

through this initial check with flying colors. It actually

"produced sound values for A(r), without experiencing the

difficulties of the other two methods around the null

points and asymptotic lines spoken of earlier.

The mathematical form of the solution is also very

appealing. All the algorithms necessary for digital

implementation, like divide, sine, cosine, etc., exist.

The solution works and can be embedde.. in a VLSI chip.

Recommendations

The solution has been shown to work for the simplest

of one-dimensional antennas. The obvious next steps would

be to press on to a two-dimensional antenna in a convenient

plane, like the yz plane, and then to a two-dimensional

- antenna located arbitrarily in space. The problems spoken
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of earlier, about securing a known closed form solution for

the comparatively simple one-dimensional case, were only

magnified by the attempt to go to higher dimensional

cases. This study had come to the close of its time

period, and it was felt this recommendation section would

lead the reader off in a search for these closed form

comparison solutions. It was right at this twilight stage

in the study, that another piece of information was learned

that solved the problem of locating the closed form

solutions for A(r).

Back on page one, it was stated that the accepted

mathematical way to find the E and H fields, is to first

solve for A(r). The process involves taking a derivative of

A to solve for H and then another derivative of H to yield

E. It turns out that when one is using numerical methods

to attack a problem, some rather disastrous results can

occur if proper care is not given to the sequence of steps.

Numerical integration involves dividing the area to be

integrated up into segments, and performing a series of

summations. Numerical differentiation also breaks the

region up into segments, and evaluates the slope between

the segments. If both operations are to be performed on a

given expression, the segment width of the differentiation

must be wider than that for the integration, or the

numerical differentiation can yield invalid results. No

such problems arise from a reverse in the sequence of

operations, differentiation before integration. It is
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therefore wiser to perform differentiation first. The

Sresults of the A(r) numerical summation algorithm can be

used as the basis for the next stage of development, that

is to look into the problem of bringing the V X into the

integral before the integration is performed. Some of the 7

problems to be solved are: do you stay with Cartesian

Coordinates; how do you deal with the general shape antenna

problem; does the summation algorithm keep the same basic

form so these initial results can be used?

It is f3i1t at this time, that the algorithm will keep

the same basic form. Once this fact is born out, more

indepth and accurate testing of the algorithm can be

performed. It would be premature to start looking into -'

*-. the number of binary bits necessary for a specified

* accuracy, etc., until the final algorithm is defined.

Mention should also be made at this point about

another possible cause for concern. During this whole

analysis period it has been assumed that the current

density input values could be acquired from somewhere. This

somewhere might be the output from a numerical technique

like a method of moments program, or the data base from the

physical measurement of an existing antenna. It has been

stated in this document, that the larger the number of sub-

elements the antenna is broken up into, the more accurate

the solution. In order to obtain the desired accuracy for

complex antenna shapes, it may prove to be a real challenge

"* . to actually come up with the current density inputs. A
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processor that can quickly and accurately produce electric

* . or magnetic fields won't be of much use if there are only

trivial input current densities to work with. It is also

therefore suggested that some research be devoted to this

area of how and where to obtain these inputs.

There is a good deal of work left to get to the

climax, a set of silicon chips. It is hoped that this

documentation of the initial attempts will allow the person

or persons carrying on the work to progress at a more rapid

rate. Good Luck.

-,. A.:

L-II.
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* Appendix A
*,•' - -_

*.: Three-Dimensional Expansion of Two Numerical

Integration Schemes

The one-dimensional Simpson's Rule:

(YA-)+ qX(59)• .---.- f, -1 1 'I
is expanded out into three-dimensions

6) 9s TERPN\z (60)

~ e

The function inside the integrals is changed to:

IN (61)

A modified Simpson's rule that deals with these types

of functions, known as Filon's method is expanded out into

three dimensions. The resulting expansion yields 216

terms. Only a representative number of these terms are

included in this appendix.
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Appendix B

"Numerical Integration and Closed Form

Solution Comparison of a Special

Integrand Function

Figure 4b shows the special function to be integrated

between limits a and b. It consists of the combination of

"a slowly oscillating term ( cos ( r z / 3 ) ) and a rapidly

oscillating term ( cos ( k z ) ). Two closed form solutions

are needed for the comparison, they are ( F & G ):

FOS ftf (62)

cc (r:r~5 + cc(63)

F•fo"Tr. +i%[,

Let k = 63.

F = - 0.01477

(This is the solution of the integral minus the end points)

Y (64)

with k 63. Again

G =0.00246
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This is the solution of the integral over the entire

region,(- 1 to 1)

Program TSTFLN at the end of this appendix was used to

calculate the same two integrals using Filon's numerical

integration method.

C1-,

$¢ ~ ~ 5,5 7o, C Coe-o '.

ck..

h { • (.C(< ) E. ,\J(k ) - .,c(&') s ,'J 10'7 + .:
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The first four terms of this expression deal only with

"the end points (a and b). The two summations provide the

* solution for all points in between the end points.

"The comparison consisted of checking to see if the two

summation terms in Filon's method would equal the closed

form solution for the same interval. Output from program

"TSTFLN, ANSHRT, is the numerical integration's solution for

this middle interval. The closed form solution F and ANSHRT

are in complete disagreement. To check that the value

ANSHRT is correct, program TSTFLN also calculates Filon's

values at the end points, and adds this quantity to ANSHRT.

Solution FULFLN in program TSTFLN is this value. FULFLN

"and the closed form solution (G) for the entire interval

are within 2% of each other. This says two things. First,

ANSHRT is the correct solution for the numerical

integration between the end points. Second, one cannot set

"up a Newton-Cotes integration scheme over a given interval,

-v and then expect to throw away unwanted sections of the

,defined interval.

4o
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"PROGRAM TSTFLN .

C THIS PROGRAM USES FILON'S NUMERICAL INTEGRATION
C METHOD TO FIND THE VALUE OF AN INTEGRAL WITH A

-'- C SLOWLY OSCILLATING ( COS ( PIZ/3 ) ) TERM AND A
C RAPIDLY OSCILLATING ( COS ( KZ ) ) TERM INSIDE
C THE INTEGRAL. ANSHRT IS THE SOLUTION FOR ALL THE
C POINTS BETWEEN THE END POINTS. FULFLN IS THE FULL
C FILON SOLUTION ( INCLUDING WEIGHTED END POINTS ).
C BOTH SOLUTIONS ARE WRITTEN OUT TO A FILE FOR
C PRINTING.
C

INTEGER M
REAL*8 AB,ZE ZO,COSZ2J,TH,H,BZ,GZ,FZ2JI,COS2JI,

"+ SUMBZ,SUMGZ,RSUMBZ,RSUMGZAZ,ANSHRT, FZOCOSZO
REAL*8 FZ2M,COSZ2M,ENDPTS,SINZO,SINZ2M,FULFLN,

" PI,K,TH2,TH3,TH4,TH5
C
C OPEN PRINT FILE

OPEN (12,FILE='TSTFLN.PRN',STATUS='UNKNOWN')
C
C READ IN VARIABLES
C

PRINT*,' ENTER M =
"READ*, M
PRINT*,' ENTER K =
"READ*, K

C
C CALCULATE THE CONSTANTS
C

PI = 4. * ATAN (I.)
SUMBZ = 0.
SUMGZ = 0.
A.=" ~B = -1.

H = (A - B) / M 1 2.
TH K * H
TH2 = TH * TH
TH3 = TH2 * TH
TH4 = TH2 * TH2
TH5 = TH4 * TH
AZ (2./45.)*TH3 - (2./315.)*TH5
"BZ = (2./3.) + (2./15.)*TH2 - (4./105.)*TH4
GZ (4./3.) - (2./15.)*TH2 + (I./270.)*TH4 t

C
C CALCULATE MIDDLE POINTS
C

DO 100 J = 1,M
ZE = B + (2. * H * J)
ZO = B + ((2. * H * J) -H)
IF (J .EQ. M) GOTO 50
FZ2J = COS (PI * ZE / 3.)
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COSZ2J = COS (K * ZE)
RSUMBZ = FZ2J * COSZ2J
SUMBZ = SUMBZ + RSUMBZ

50 FZ2JI = COS (PI * ZO / 3.)
COS2J1 = COS (K * ZO)
RSUMGZ = FZ2J1 * COS2JI
SUMGZ = SUMGZ + RSUMGZ

100 CONTINUE
C 4

C WEIGHT THE MIDDLE POINTS
C

SUMBZ = SUMBZ * BZ
SUMGZ = SUMGZ * GZ
ANSHRT = (SUMBZ + SUMGZ) * H

C
C CALCULATE THE END POINTS
C

FZO = COS (PI * B / 3.)
COSZO = COS (K * B)
FZ2M = COS (PI * A / 3.)
COSZ2M = COS (K * A)
SINZO = SIN (K * B)
SINZ2M = SIN (K * A)
ENDPTS = ((AZ*FZ2M*SINZ2M)-(AZ*FZO*SINZO)+

+ ((BZ*FZO*COSZO)/2.)+((BZ*FZ2M*COSZ2M)/2.))*H
FULFLN = ANSHRT + ENDPTS

C
C WRITE OUT THE SOLUTIONS TO A FILE
C

WRITE (12,200)
200 FORMAT (lx,' M = ',2X,'SOLUTION ',

+2X,'FULL 6)

WRITE (12,210)
210 FORMAT (15X,'MINUS ',2X,' SOLUTION ')

WRITE (12,220)
220 FORMAT (15X,'END POINTS ')

WRITE (12,225)
225 FORMAT (lx,'')

WRITE (12,230) M , ANSHRT , FULFLN
230 FORMAT (5X,14,5X,E12.6,2X,E12 .6)

STOP
END
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A p p e n d i x C ,"I V

Programs Used for Evaluations of

Numerical Solution (UNIFLD, TRIFLD)-.--

Program UNIFLD was used to test the numerical solution

against the far-field and ICF solutions for a dipole

antenna with a uniform current density. The program uses

function routines for calculation of each of the three

solutions -- outputs from the program are:

MAGICF = Vector potential magnitude of ICF solution

MAGFAR = Vector potential magnitude of far-field
solution

MAGSUM = Vector potential magnitude of numerical
solution

Program TRIFLD was used to test the numerical solution
Sagainst the other two solutions for the same antenna with a

triangular shaped current density. The solution outputs

"are named the same as those in the UNIFLD program. The

function routines in TRIFLD have been changed from those in

UNIFLD to solve for the triangle current density.
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PROGRAM UNIFLD

C UNIFORM CURRENT DISTRIBUTION ON DIPOLE ANTENNA
C
C THIS PROGRAM CALCULATES THE VECTOR POTENTIAL BOTH IN
C COMPLEX NUMBER AND MAGNITUDE FORM BY THREE
C DIFFERENT METHODS . THE METHODS ARE FAR-FIELD SOLUTION,
C INCOMPLETE CYLINDRICAL FUNCTIONS (ICF), AND A NUMERICAL
C SUMMATION SOLUTION. THE VECTOR POTENTIAL IS ALSO
C CALCULATED AT A VECTOR DISTANCE (R) , OVER A RANGE
C OF ANGLES THETA. THE SOLUTIONS ARE WRITTEN OUT TO A
C FILE THAT IS FORMATED INTO A TABLE.
C

REAL*8 PI,Y,Z,K,THETA,H, R,X,I,STRT,FINSH, INC
REAL*8 MAGFAR,MAGSUM,MAGICF
COMPLEX J,I1TOP,I1BOT,I1,SUMFLD,FARFLD
COMPLEX AFDICF, AFDSUM, AFDFAR
INTEGER M

C
C OPEN PRINT FILES
C

OPEN (11,FILE='UNIFLD•PRN' ,STATUS='UNKNOWN')
C
C ESTABLISH THE CONSTANTS
C

J = CMPLX (0.,i.)
PI = 4. * ATAN (1.)

C
C READ IN THE VARIABLES
C

PRINT*,* ENTER R
READ*, R
PRINT*,' ENTER K
READ*, K
PRINT*,' ENTER M
READ*, M
PRINT*,' ENTER START ANGLE
READ*, STRT
PRINT*, ENTER FINISH ANGLE
READ*, FINSH
PRINT*,' ENTER INCREMENT ANGLE
READ*, INC

C
C CALCULATE THE DELTA WIDTH
C

H = 1. / M
C
C ESTABLISH THE FORMAT FOR THE MAGNITUDE FILE
C

WRITE (11,600)
600 FORMAT (IX, '-- -------------------------------------

+------------------------I
WRITE (11,610)
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"610 FORMAT (lX,' I I MAGNITUDE OF VECTOR
+POTENTIAL I"" WRITE (11,620)

620 FORMAT (lX,' I I----------------------------
-------------------- I )

WRITE (11,630)
630 FORMAT (IX,' I I UNIFORM CURRENT

+DISTRIBUTION I ')
WRITE (11,620)
WRITE (11,635) R M K

635 FORMAT (lx,' I R = ',F5.1,' i M =
+,5, K = ',F5.0,' I ')

WRITE 11, 620)
WRITE (11,640)

640 FORMAT (iX,' j THETA I FAR- ICF
+ I NUMERICAL I)

WRITE (11,650)
650 FORMAT (IX,' I (DEG) I FIELD

+I i ')
WRITE (11,660)

660 FORMAT (lX,' I-------------------------
------------------------------ I')

C c FIND VECTOR POTENTIAL OVER RANGE OF THETAS
C

DO 200 I = STRT,FINSH,INC
THETA = I * (PI / 180.)
Y = SIN (THETA) * R
Z = COS (THETA) * R

C
C FIND ICF VALUE
C

IlTOP = Ii (Y,Z,K,PI,J)
X = -Z
IlBOT = Il (Y,X,K,PI,J)

C
C ICF SOLUTION IN COMPLEX NUMBER FORM
C

AFDICF = IlTOP + IlBOT
C
C NUMERICAL ANSWER IN COMPLEX NUMBER FORM
C

AFDSUM = SUMFLD(Y,Z,K,M,H)/4./PI H
C
C MAGNITUDE OF ICF SOLUTION
C

MAGICF = SQRT(REAL(AFDICF)*REAL(AFDICF) +
+ AIMAG(AFDICF) * AIMAG(AFDICF))

C
C MAGNITUDE OF NUMERICAL SOLUTION
C

MAGSUM = SQRT(REAL(AFDSUM)*REAL(AFDSUM) +
AIMAG(AFDSUM) * AIMAG(AFDSUM))
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"0 ~C
C SET FAR-FIELD ANSWERS TO ZERO IF R IS NOT IN FAR-FIELD
C

IF (R.LT.20.) THEN
MAGFAR = 0.
GOTO 300
END IF

C
C FAR-FIELD SOLUTION IN COMPLEX NUMBER FORM
C

AFDFAR = FARFLD (K,PIR,THETA)
C
C MAGNITUDE OF FAR-FIELD SOLUTION
C

MAGFAR = SQRT(REAL(AFDFAR)*REAL(AFDFAR) +
+ AIMAG(AFDFAR) * AIMAG(AFDFAR))

C
C WRITE OUT SOLUTIONS FOR CURRENT VALUE IF THETA
C
300 WRITE (11, 330) I , MAGFAR , MAGICF , MAGSUM
330 FORMAT (lX,' I ',F5.1, ',E10.4,' I ',

+E10.4, I ',E1O.4,' I ')

WRITE (11,660)
200 CONTINUE

STOP
END

C
C FUNCTION ROUTINE THAT CALCULATES THE ICF SOLUTION
C

"COMPLEX FUNCTION Ii (Y,Z,K,PI,J)
"COMPLEX II,BR,J
REAL*8 Y,ZK,PI,T
"IF((ABS(K*Z).LT.10.).OR.(ABS(K*(Z-.5)).LT.10.))THEN
GOTO 700
END IF
"T= Z-.5
Ii = (BR (Y,K,T,J) - BR (Y,K,Z,J)) / 4. / PI

RETURN
700 PRINT*,' K * Y TOO SMALL

RETURN
END

"C
COMPLEX FUNCTION BR(YK,ZEJ)
COMPLEX BR,J
REAL*8 KZE,YR,U
"R = SQRT (Y * Y + ZE * ZE)
"U = -K * ZE
U 1. /U
BR = CMPLX(U-(3.*Y*Y+4.*ZE*ZE)*U*U*U/(ZE*ZE),

+-R*U*U/ZE)
BR = BR * CEXP(CMPLX(0.,-K * R ))
BR = J * BR
RETURN
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END
C
C FUNCTION ROUTINE THAT CALCULATES THE NUMERICAL SOLUTION
C

COMPLEX FUNCTION SUMFLD (YDZK,MH)
COMPLEX A2 ,A, SUMFLD
REAL*8 Y,Z,KH,ZJ,ZABS,R
INTEGER M
SUMFLD = CMPLX (0.,0.)
DO 400 J = 1,M
ZJ = -.5 + (H *J) - (.5 *H)

ZABS = ABS WZ)
R =SORT (Y * Y + (Z - ZJ) *(Z -ZJ))

A2 =CEXP (CMPLX (0.,-K *R )
A =A2 /R
SUMFLD =SUMFLD + A

400 CONTINUE
RETURN
END

C
C FUNCTION ROUTINE THAT CALCULATES THE FAR-FIELD SOLUTION
C

COMPLEX FUNCTION FARFLD (KPIRTHETA)
COMPLEX SIFARFLD
REAL*8 KPI.R,THETA,U,UL2,SINU
U = -COS (THETA) * ABS (K
UL2=U /2.
SI =CEXP( CMPLX( 0.,-K*R)) 2. /PI R
SINU = SIN (UL2)
FARFLD =SI *SINU IU
RETURN
END
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7. --

P ROG RAM T RI FLD

C TRIANGULAR CURRENT DISTRIBUTION ON DIPOLE ANTENNA
C U
C THIS PROGRAM CALCULATES THE VECTOR POTENTIAL BOTH IN
C COMPLEX NUMBER AND MAGNITUDE/PHASE FORM BY THREE
C DIFFERENT METHODS THE METHODS ARE FAR-FIELD SOLUTION,
"C INCOMPLETE CYLINDRICAL FUNCTIONS (ICF), AND A NUMERICAL
C SUMMATION SOLUTION. THE VECTOR POTENTIAL IS ALSO
C CALCULATED AT A VECTOR DISTANCE (R)_, OVER A RANGE
C OF ANGLES THETA. THE SOLUTIONS ARE WRITTEN OUT TO
C FILES THAT ARE FORMATED INTO A TABLE.
C

REAL*8 PI,Y,Z,K,THETA,H,R,XI,STRTFINSHINC,MAGICF
REAL*8 MAGFAR,PASFAR,MAGSUM,PASSUM,PASICF
COMPLEX J,I1TOP,IIBOT,IIBOTH,I1,I2TOP,I2BOT,I2BOTH
COMPLEX AFDICF, AFDSUM, AFDFAR, SUMFLD, FARFLD, 12, Al *A2
INTEGER M

C
C OPEN PRINT FILES
C

OPEN (9,FILE='MTRIFLD•PRN',STATUS='UNKNOWN')
OPEN (10,FILE='PTRIFLD.PPN' ,STATUS='UNKNOWN')

C
C ESTABLISH THE CONSTANTS
C

J = CMPLX (0.,1.)
- PI =4. * ATAN (1.)

C
C READ IN THE VARIABLES
C

PRINT*,' ENTER R
READ*, R
PRINT*, ENTER K
READ*, K
PRINT*,' ENTER M
READ*, M
PRINT*,' ENTER START ANGLE
READ*, STRT
PRINT*,' ENTER FINISH ANGLE
READ*, FINSH
PRINT*,' ENTER INCREMENT ANGLE a
READ*, INC

C
C CALCULATE THE DELTA WIDTH
C

H = 1. / M
C
CC ESTABLISH THE FORMAT FOR THE MAGNITUDE FILE

WRITE (9,600)

600 FO RMAT (l1X - - - - - -- - - - - - -- - - - - - -
+--------------------------)
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./< 610 WRITE (9,610)

610 FORMAT (lX,' f MAGNITUDE OF VECTOR
+POTENTIAL I )

615 FORMAT (lX,' PHASE OF VECTOR k.
+POTENTIAL

WRITE (9,620)
620 FORMAT (1X,' -*-- -- - - - -

WRITE (9,630)
630 FORMAT (lX,' TRIANGULAR CURRENT

+DISTRIBUTION I *)
WRITE (9,620)
WRITE (9,635) R , M , K

635 FORMAT (lX,' I R = ',F5.1,' M =
+,15,' K =',F5.0,' I'

WRITE ( 9, 620) U-
WRITE (9,640)

640 FORMAT (1X, I THETA FAR- I ICF
+ I NUMERICAL I )

WRITE (9,650)
650 FORMAT (lx,' (DEG) I FIELD

+ I')
WRITE (9,660)

660 FORMAT (lX,' .---------------------
----------------- --------------

C
C ESTABLISH THE FORMAT OF THE PHASE FILE
C

WRITE (10,600)
WRITE (10,615) '.4
WRITE (10,620)
WRITE (10,630)
WRITE (10,620)
WRITE (10,635) R ,M ,K .

WRITE (10,620)
WRITE (10,640)
WRITE (10,650) -. .

WRITE (10,660)
C
C FIND VECTOR POTENTIAL OVER RANGE OF THETAS
C

DO 200 I = STRT,FINSH,INC
"THETA = I * (PI / 180-).) '.
Y = SIN (THETA) * R
Z = COS (THETA) * R

C
C FIND ICF VALUE
C

I1TOP = Ii (Y,Z,K,PI,J,I2,AI,A2)
I2TOP = 12
X = -Z
IIBOT = Ii (Y,X,K,PI,J,I2,AI,A2)

I2BOT = 12
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IlBOTH = IlTOP + IlBOT
I2BOTH = (I2TOP + I2BOT) * (-2.)

C
C ICF SOLUTION IN COMPLEX NUMBER FORM
C

AFDICF = IlBOTH + I2BOTH
C
C NUMERICAL ANSWER IN COMPLEX NUMBER FORM -'

c
AFDSUM = SUMFLD(Y,Z,K,M,H)/4./PI * H

C MAGNITUDE OF ICF SOLUTION
C '

MAGICF = SQRT(REAL(AFDICF)*REAL(AFDICF) +
+ AIMAG(AFDICF) * AIMAG(AFDICF)) *.

C
C PHASE OF ICF SOLUTION
C

PASICF = ATAN2(AIMAG(AFDICF),REAL(AFDICF))
+ / PI * 180.

C
C MAGNITUDE OF NUMERICAL SOLUTION
C

MAGSUM = SQRT(REAL(AFDSUM)*REAL(AFDSUM) +
+ AIMAG(AFDSUM) * AIMAG(AFDSUM))

C
"C PHASE OF NUMERICAL SOLUTION
C

PASSUM = ATAN2(AIMAG(AFDSUM), REAL(AFDSUM))
+ / PI * 180.

C
C SET FAR-FIELD ANSWERS TO ZERO IF R IS NOT IN FAR-FIELD
C

IF (R.LT.20.) THEN
MAGFAR = 0.
PASFAR = 0.
GOTO 300
END IF

C
C FAR-FIELD SOLUTION IN COMPLEX NUMBER FORM
C

AFDFAR = FARFLD (K,PI,R,THETA)
C
C MAGNITUDE OF FAR-FIELD SOLUTION
C

MAGFAR = SQRT(REAL(AFDFAR)*REAL(AFDFAR) +
+ AIMAG(AFDFAR) * AIMAG(AFDFAR))

c
C PHASE OF FAR-FIELD SOLUTION
C

PASFAR = ATAN2(AIMAG(AFDFAR), REAL(AFDFAR))
l.•_+ /2Pl* 180.

"" ° C
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C WRITE OUT SOLUTIONS FOR CURRENT VALUE OF THETA
-,- .. -,,C

300 WRITE (9, 330) I , MAGFAR , MAGICF , MAGSUM
WRITE (10,330) I , PASFAR , PASICF , PASSUM

330 FORMAT (lX,' I 'F5.l, I ,E10.4,' I ',"..
+E10.4, ' ',E10.4,' I ')

WRITE (9,660)
WRITE (10,660)

200 CONTINUE
STOP
END

C
C FUNCTION ROUTINE THAT CALCULATES THE ICF SOLUTION
C

COMPLEX FUNCTION Ii (Y,Z,KPI,J,I2,Al,A2)
COMPLEX Il,BR,J,I2,Al,A2
REAL*8 YZ,K,PI,T
IF((ABS(K*Z).LT.l0.).OR.(ABS(K*(Z-.5)).LT.10.))THEN
GOTO 700
END IF
T = Z -. 5
II = (BR (YK,TJ) - BR (Y,K,Z,J)) / 4. / PI
Al =CEXP(CMPLX(0.,-K*SQRT(Y*Y+(Z-.5)*(Z-.5)))) -.

A2 = CEXP (CMPLX (0., -K * SQRT(Y * Y + Z * Z )))
12 = (Al - A2) / 4. / PI / ABS(K) * J
12 = 12 + (Z * II)

RETURN
700 PRINT*,' K * Y TOO SMALL

RETURN
END

C
COMPLEX FUNCTION BR(Y,K,ZEJ)
COMPLEX BR,J
REAL*8 K,ZE,Y,R,U
R = SQRT (Y * Y + ZE * ZE)
U = -K * ZE
U = 1. / U
BR = CMPLX(U-(3.*Y*Y+4.*ZE*ZE)*U*U*U/(ZE*ZE),
-R*U*U/ZE)
BR = BR * CEXP(CMPLX(0.,-K * R ))
BR = J * BR
RETURN
END

C
C FUNCTION ROUTINE THAT CALCULATES THE NUMERICAL SOLUTION
C

COMPLEX FUNCTION SUMFLD (YZ,K,M,H)
COMPLEX A2,A, SUMFLD
REAL*8 Y, Z,K,H, ZJ, ZABS,A1 ,R
INTEGER M
SUMFLD = CMPLX (0.,0.)
DO 400 J = 1,M
ZJ = -. 5 + (H *J) - (.5 * H)
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ZABS= ABS (ZJ)
Al = 1. - (2. * ZABS)
R = SORT (Y * y + (Z - ZJ) * (Z - ZJ))

.'-:* A2 = CEXP (CMPLX (O.,-K * P ))F
A = Al * A2 / R
SUMFLD = SUMFLD + A

400 CONTINUE
RETURN
END

C
C FUNCTION ROUTINE THAT CALCULATES THE FAR-FIELD SOLUTION
C

COMPLEX FUNCTION FARFLD (K,PI,R,THETA) . .
COMPLEX A, A2, FARFLD
REAL*8 K,PI,,R,THETA,UU4
Al = CEXP (CMPLX (0.,-K * R ))
U = -COS (THETA) * ABS (K)
U4 = U / 4.
A2 = ( SIN (U4) / U4 ) * ( SIN (U4) / UA ) * .5
FARFLD = Al /4. / PI/ R * A2
RETURN ".
END
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Appendix D

Exact Solutions for Radiation from Rectangular and

Triangular Current Distributions on Dipoles

"USAF Institute of Technology

Wright-Patterson AFB, Ohio 45433

INTRODUCTION

Radiation from the rectangular current uistribution of

Figure 9 is often studied as a useful approximation to

radiation from a short dipole, and radiation from the

triangular distribution of Figure 8 is often studied as a

useful approximation to radiation from a dipole of

intermediate length (2:106). In standard works like

"references (2;3), the fields produced by these

distributions are treated approximately. It is of course

"desirable to have exact solutions whenever these can be

conveniently obtained. While exact solutions for other

distributions which are useful for modeling current

distributions in actual dipoles are known--for example, the

exact solution for radiation from a piecewise-sinusoidal

distribution as given in reference (2)--it is nevertheless

useful to have other exact solutions for such purposes as

the evaluation of numerical methods for solving radiation

problems. This note shows that radiation from both the

"current distributions shown in Figures 8 and 9 can be
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expressed exactly in terms of known special functions,

specifically, incomplete cylindrical functions (22).

Series and asymptotic expansions are available for these .

functions, which may be used in radiation problems. WeIgive an example of such an application, in the assessment

of a numerical scheme.

TWO EXACT SOLUTIONS

Consider first radiation from the current distribution of

Figure 9. The vector potential for this case is

g(6•-- /< I I ( , £)(66)

where the function If(r,z) is given by

r±l +(•-i -u<•, • r a, e_ •c•.(67) .;

Set v = z - u, so that

. + Z. V

-~ - A.'(68)

We treat first the case r = 0. Set v = ry, to find

' .• 24 I 4 I I- ;- " "

= e" (69)

v- .'." -i -.-. ~
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Since the problem is symmetric about z = 0 we may consider

only z > 0 without loss of generality. We'll consider

"°0 separately the cases z > d/2 and z < d/2. If z > d/2, then

y is positive over the entire interval of integration in

(69). Then we may set

V,;L4 j -I-f-~- =I j'~j(70)

and write

Jlr

e (71)

where

+ +I

In reference (22), Agrest and Maksimov study several

members of the class of functions called incomplete

cylindrical functions. In particular, they consider

incomplete Hankel functions - F' (,'" defined by:

/(72)

tr
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for >j > 0 and Re( v + 1/2) > 0, where

P~ 2-

I,4.

Thus for the case at hand (i.e. z > d/2, r > 0 ),

[ , - -

(Co -(,k• 73) ""-

since Ao = ( (1/2) = •

Series and asymptotic expansions given in Sections 7 and 9,

respectively, of reference (22) permit the numerical

evaluation of the incomplete Hankel functions of (73).

Turning now to the case z < d/2, we see that (69) may

then be written in the form

k ', + '2  1_12 ,"- II*t-'j

(74)

Li ; I'-• • L rL ,.v - .

*' if' r'
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"• " Now the variables of integration are positive on the

S~intervals of integration of both the integrals in (74). We

may apply the same change of integration variable that took
us from (67) to (71), to each integral in (74). Then (72)

allows us to write.•

It follows from (74) and these last consideration (or also .- o

directly from (75) that, when z =d/2, i:•

z,(Cos (76)

Equations (73), (75) and (76) give exact expressions for".!i!.
the vector potential of the radiation resulting from the

---

Forren ,th ditrbservation pointr is insid the z randiator if. "

my d/appl the sae chnge of inotegrato var e that tookr

ndi fm d/2,wea

-- , _ "[..(] A . .76

Eqaton/(3) (5 an,7).ieexc xpeson o

the vecto pothentieraliof on sisd the radiatinrslngfom the

.-.""current d istributweionofe Fhigur 9,o forsiall zcand. all r = 0...

Todald with the case r'=0,,otetha

'/.'2

- . "-
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0%
WWI -1

f LC) fkeIT, (o , e;Li'
(78) ,

or, setting v = z -u,

: +L/'

"(79)

where El(w) denotes the exponential integral and denotes

complex conjugate.

Series and asymptotic expansions useful for evaluating the

exponential integral are found in Chapter 5 of reference

(32).

.Now let us consider the current distribution of Figure 8.

For this case,

F°.. (80)
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"'" where

-z t Z d-, (81)

S7-"- L "

.,LIZt ; K~ri-( -U-U.' Z -z

,-. _ ~L/Z ".-

-' I L+5 1 (82)

i n w h i c h .,-'

i•r Ilulem (83) ..

"L+ +/Y +(___________ i "
ee I' - e, (84)..

•-(- '"• II ''•> (85)

-- I --- -1-

Straightforward additions and subtractions show that.'

+ 
,:.r.z

9-8•r ÷ •+•) i Ir>+ <" -... i"

cr J .

.. .(..

"• -7 • ,' ; ., < ' •• , ,,"- "



Now, the first and third integrals of (85) are integrals of

"exact differentials, while the second and fourth integrals

can be evaluated in terms of incomplete Hankel functions by

arguments similar to those given above to evaluate 1 f(r,z).

Carrying out straightforward but tedious manipulations, one

finds

+

(86)

when z > d/2, where t 3  1 + z 2 /r 2  , and

* . ..4

/ ~ .rt v-.:-.f .i
I 7 I~ f /r €.. /r;

(87)'I -.. >-

when z < d/2. Equations (86) and (87) give exact

expressions for the vector potential of radiation from the

system of Figure 8 for all positive z and all r > 0. For

r = 0 and z > d/2, we find
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p-. ,". . -".~~r~ rr - . - -*---,- -..- **-,

-... _. - Z ' ( C o 5 h ,L / . - I,, ,

tt
(88) ..

Equation (88) completes the determination of the vector

potential for radiation from the system of Figure 8.

Of course, it is the fields rather than the vector

potential which one wishes to know. Expressions given in

reference (22) permit one to evaluate the derivatives of

the vector potential which give the fields.
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Appendix E

Solution Comparison Tables
I

The following tables show the results of comparisons

made of both the uniform and triangular current

distributions, for various values of r and M.

1.

"--
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Table II

MAGNITUDE OF VECTOR POTENTIAL

UNIFORM CURRENT DISTRIBUTION

R= 5.0 jM= 50 IK= 63.

THETA FAR- ICF NUMERICAL
(DEG) FIELD I
15.0 j .0000E+00 I0.4457E-03 I0.4743E-03
18.0 j .0000E+00 I0.5346E-03 I0.5678E-03

21.0 0.0000E+00 I0.4922E-03 I0.5216E-03

24.0 J .0000E4-00 J0.2636E-03 J0.2784E-03
27.0 I .0000E+00 j0.1483E-03 I0.1557E-03
30.0 0.0000E+00 I0.5076E-03 f0.5332E-03
33.0 0.0000E+00 I0.5797E-03 I0-6071E-03

36.0 I .0000E+00 I0.2062E-03 I0.2143E-03
39.0 0.0000E+00 j0.4309E-03 10.4479E-03
42.0 I .0000E+00 0.6782E-03 I0.7030E-03
45.0 0.0000E+00 I0.1932E-03 I0.1978E-03
48.0 J .0000E+00 J0.6403E-03 J0.6589E-03

51.0 I .0000E+00 I0.6582E-03 I0.6748E-03
54.0 I .0000E+00 I0.3656E-03 j0.3722E-03

57.0 0.0000E+00 I 0.9448E-03 I 0.9626E-03

60.0 j .0000E+00 I0.2104E-03 0-2087E-03

63.0 0.0000E+00 J0.1161E-02 0.1176E-02

66.0 I .0000E+00 I0.4130E-03 I0-4130E-03

69.0 I .0000E+00 I0.1476E-02 I0.1488E-02

I 02



Table III

- -- -- -- - - - -- - ---- ---- --- -- -- --- --- ---- -- - ---
MAGNITUDE OF VECTOR POTENTIAL

UNIFORM CURRENT DISTRIBUTION
-- -- -- - -- -- - --- ---- ---- --- ---- ---- ---

R5.0 M 500 K 63.

THETA FAR- I ICF NUMERICAL

(DEG) FIELD I
15.0 j .0000E+00 I0.4457E-03 I0.4459E-03
18.0 0.0000E+00 I0.5346E-03 I0.5349E-03
21.0 I .0000E+00 I0.4922E-03 I0-4925E-03

24.0 0.0000E+00 J0.2636E-03 I0.2637E-03
27.0 0.OOOOE+00 0.1483E-03 j0.1483E-03

30.0 0.0000E+00 I0.5076E-03 I0.5078E-03

33.0 0.0000E+00 I0.5797E-03 I0.5800E-03
---- -- - -------- ------- -------

* .36.0 0.0000E+00 I0.2062E-03 I0.2063E-03

39.0 0.0000E+00 j0.4309E-03 I0.4311E-03

42.0 j .0000E-I00 0.6782E-03 I0.6785E-03
45.0 0.0000E-i00 0.1932E-03 0.1932E-03

48.0 0.0000E+00 I0.6403E-03 j0.640SE-03

51.0 0.0000E+00 I0.6582E-03 I0.6584E-03

54.0 I .0000E+00 I0.3656E-03 I0.3657E-03
57.0 0.00iOiE+00 I0.9448E-03 I0.9450E-03

------------------------ --------------- --------------- ---------------
66.0 I .0000E+00 I0.2104E-03 I0.2104E-03

------------------------ --------------- --------------- ---------------

69.0 0.0000E+00 I0.1476E-02 I0.1477E-02
------- --------- --- --- ---- --- - - ---- --- ---
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Table IV

MAGNITUDE OF VECTOR POTENTIAL

UNIFORM CURRENT DISTRIBUTION

R= 25.0 IM= 50 JK= 63.

THETA FAR- j ICF NUMERICAL
(DEG) FIELD I
15.0 0.8742E-04 I0.8749E-04 I0.9311E-04

18.0 j0.1056E-03 I0.1056E-03 I0.1122E-03

21.0 I0.9805E-04 I0.9807E-04 I0.1040E-03
24.0 I0.5326E-04 I0.5324E-04 j0.5631E-04

27.0 I0.2338E-04 I0.2365E-04 j0.2494E-04

30.0 0.9784E-04 0.9799E-04 I0.1030E-03

33.0 j0.1156E-03 I0.1156E-03 I0.1212E-03 -

- -- - --- - -- - - -- - - -- - - - - - - - - - -- - - --- - - -- -- -

36.0 I0.4298E-04 0.4291E-04 I0.4481E-04

39.0 0.7896E-04 I0.7926E-04 I0.8252E-04
42.0 I0.1344E-03 I0.1344E-03 I0.139SE-03

45.0 I0.3987E-04 I0.3979E-04 I0.4112E-04
48.0 0.1196E-03 I0.1199E-03 I0.1235E-03
51.0 0.1328E-03 I0.1328E-03 0.1363E-03

54.0 I0.5641E-04 0.5712E-04 0.5845E-04

57.0 0.1841E-03 I0.1843E-03 I0.1880E-03

60.0 J0.8493E-05 I0.1142E-04 I0.1147E-04
63.0 10.2196E-03 I0.2201E-03 I0.2232E-03
66.0 I0.6046E-04 I0.6135E-04 I0.6198E-04

69.0 0.2700E-03 j0.2709E-03 I0.2732E-03
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Table V

- - -- - -- - - - - - - ---- --- - --- -- -- -- - -- - --- - --- -- -
MAGNITUDE OF VECTOR POTENTIAL

UNIFORM CURRENT DISTRIBUTION

R= 25.0 M= 500 K 63.

THETA FAR- ICF NUMERICAL J

(DEG) FIELD I
15.0 0.8742E-04 J0.8749E-04 I0.8754E-04
18.0 0.1056E-03 10-1056E-03 I0.1057E-03
21.0 10.9805E-04 I0.9807E-04 I0.9813E-04
24.0 I0.5326E-04 I0.5324E-04 I0.5326E-04

27.0 I0.2338E-04 I0-2365E-04 j0-2366E-04

30.0 J0.9784E-04 I0.9799E-04 I0-9804E-04
33.0 0-1156E-03 j0-1156E-03 I0.1157E-03

--3-6-.0 -- 0--.4-29-8-E--04 --- 1-.4-2-91E--0-4 --- ----- 3E------

39.0 10.7896E-04 I0.7926E-04 I0-7929E-04
42.0 10.1344E-03 I0-1344E-03 j0-1345E-03

45.0 I0.3987E-04 0.3979E-04 I0.3980E-04
48.0 0.1196E-03 I0.1199E-03 j0-1199E-03

51.0 0.1328E-03 J0-1328E-03 I0-1328E-03
54.0 I0.5641E-04 I0.5712E-04 I0.5714E-04
57.0 I0.1841E-03 I0.1843E-03 I0.1844E-03

------------------------- --------------- --------------- ---------------
60.0 I0.8493E-05 I0.1142E-04 I0.1143E-04
63.0 I0.2196E-03 I0-2201E-03 I0.2201E-03
66.0 j0.6046E-04 I0.6135E-04 I0.6134E-04

----- ------- ----------- --------------
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* Table VI

---- ----- -------- ---- --- ---- --- --- ---- --- ---

MAGNITUDE OF VECTOR POTENTIAL

UNIFORM CURRENT DISTRIBUTION&

R = 50.0 1M = 50 1K= 63.

THETA FAR- ICF NUMERICAL

(DEG) FIELD II
15.0 0.4371E-04 I0.4372E-04 j0.4656E-04

18.0 I0.5279E-04 I0.5279E-04 j0.5609E-04

21.0 0.4903E-04 I0.1903E-04 I0.5197E-04

24.0 0.2663E-04 0.2663E-04 j0.2813E-04

27.0 I-0.1169E-04 -- I -0.1172E-04 -- -0.1237E-04

30.0 0.4892E-04 I 0.4894E-04 I 0.5145E-04

33.0 0.5781E-04 I 0.5781E-04 I 0.6060E-04
-- - - - -- -- -- -- -- -- - - - -- - - - - -- - - - -

36.0 0.2149E-04 I 0.2148E-04 I 0.2243E-04

39.0 I0.3948E-04 I 0.3952E-04 I 0.4114E-04

42.0 I0.6720E-04 I0.6720E-04 I0.6974E-04
I45.0 0.1993E-04 j0.1992E-04 I0.2059E-04

48.0 j0.5978E-04 I0.5982E-04 I0.6165E-04

51.0 0.6641E-04 0.6640E-04 I0.6820E-04

54.0 0.2821E-04 j0.2B29E-04 I0.2895E-04
57.0 f0.9207E-04 I0.9210E-04 0 .9394E-04

60.0 I0.4247E-05 I0.4653E-05 I0.4721E-05

63.0 I0.1098E-0 0.1099E-3.14E3

66.0 I0.3023E-04 I0.3034E-04 0.3067E-04

69.0 0.1350E-03 I0.1351E-03 I0.1362E-03
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Table VII

-- ----- ----- ----- --- - --- ---- --- --- ---- --- ---

MAGNITUDE OF VECTOR POTENTIAL

* UNIFORM CURRENT DISTRIBUTION

R= 50.0 JM= 500 K= 63.

THETA FAR- ICF NUMERICAL
(DEG) FIELD J
15.0 j0.4371E-04 10.4372E-04 I0.4374E-04

- - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -I18.0 0.5279E-04 I0.5279E-04 j0.5282E-04

21.0 I0.4903E-04 I0.4903E-04 I0.4906E-04
..24.0 j0.2663E-04 I0.2663E-04 I0.2664E-04

27.0 0.1169E-04 j0.1172E-04 I0.1173E-04

30.0 0.4892E-04 I0.4894E-04 0.4897E-04

33.0 0.5781E-04 0.5781E-04 I0.5784E-04
- - - - - - - - - - - - - - - - - - - - - - - - - - - -

36.0 0.2149E-04 I0.2148E-04 I0.2149E-04
39.0 0.3948E-04 0-3952E-04 I0.3954E-04

42.0 I0.6720E-04 I0.6720E-04 I0.6723E-04
45.0 I-0.1993E-04 -- I -0.1992E-04 -- I -0.1993E-04

48.0 f0.5978E-04 I 0-5982E-04 I 0-5984E-04

51.0 I0.6641E-04 I 0-6640E-04 I 0.6641E-04

54.0 I0.2821E-04 I 0.2829E-04 I 0.2830E-04

57.0 I0.9207E-04 I 0-9210E-04 I 0.9211E-04

60.0 I0.4247E-05 I 0.4653E-05 I 0-4654E-05

63.0 10.1098E-03 I0.1099E-03 I 0-1099E-03

66.0 j0.3023E-04 I 0.3034E-04 I 0-3035E-04

69.0 I0-1350E-03 I 0.1351E-03 I 0.1351E-03

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Table VIII 6

MAGNITUDE OF VECTOR POTENTIAL

TRIANGULAR CURRENT DISTRIBUTION

R = 5.0 M- 50 I K = 63.

THETA FAR- ICF j NUMERICAL
(DEG) FIELD [

15.0 0.•000E+00 I 0-8399E-05 0.7817E-05

18.0 Z• 0.0 E+00 0 •-1643E-04 0.1533E-04

21.0 0.•0000E+00 0•2686E-04 0.2512E-04

24.0 • 0.OOOOE+00 0.3642E-04 0.3418E-04
------------------------ --------------- --------------- ---------------

27.0 • 0.0000E+00 0•3960E-04 0.3728E-04

30.0 0.•0000E+00 0-3154E-04 I 0.2978E-04

33.0 0.0000E+00 0-1466E-04 0-1383E-04

36.0 0.0000E+00 0.-1187E-04 0.-1130E-04

39.0 0.0000E+00 0.1874E-04 0.1802E-04 .Zi-.

42.0 0.0000E+00 0.3737E-04 0•3598E-04

45.0 0 •0000E+00 0•6036E-04 0•5824E-04

48.0 0 .• 0E+00 0.4889E-04 0.4728E-04

51.0 I 0.•0000E+00 0.2449E-04 0.2363E-04

54.0 0.0000E+00 0.5028E-04 0.4913E-04

57.0 0.•000E+0O 0.7460E-04 0.7319E-04
------------------------ --------------- --------------- ---------------

60.0 I .0000E+00 0.-1128E-03 0.-1106E-03

63.0 0.0000E+00 0.5399E-04 0.5294E-04 -

66.0 •O.00E+00 0.1198E-03 j 0.1177E-03

69.0 0.0000E+00 0.1977E-03 0.1924E-03
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Table IX

MAGNITUDE OF VECTOR POTENTIAL

TRIANGULAR CURRENT DISTRIBUTION

R= 5.0 jM= 100 K= 63.
- - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - -

THETA FAR- ICF NUMERICAL
(DEG) FIELD I

- - - - - - - - - - - - - - - - - - - - - - - - - -

15.0 0.0000E+00 I0.8399E-05 f0.8267E-05

18.0 I .0000E+00 I0.1643E-04 I0.1619E-04
21.0 I .0000E+00 I0.2686E-04 I0.2646E-04
24.0 I .0000E+00 j0.3642E-04 I0.3591E-04

27.0 0.0000E+00 J0.3960E-04 I0.3905E-04
30.0 0.0000E+00 0.3154E-04 I0.3112E-04

33.0 I .0000E+00 j0.1466E-04 f0.1447E-04

36.0 j .OOOOE+00 I0.1187E-04 I0.1175E-04

39.0 I .0000E+00 0.1874E-04 I0-1855E-04
42.0 0.0000E+00 j0.3737E-04 I0.3704E-04

45.0 I .OOOOE+00 I0.6036E-04 I0-5982E-04
48.0 0.0000E+00 j0.4889E-0 I 0.4847E-0

51.0 J .0000E-i00 I0.2449E-04 J0.2429E-04

54.0 I .0000E-f00 I0.5028E-04 I0.4994E-04

57.0 j .OOOOE+00 0.7460E-04 I0.7411E-04

60.0 IO.0000E4-00 I0.1128E-03 I0.1120E-03
63.0 I .0000E+00 I0.5399E-04 I0.5374E-04
66.0 I .0000E+00 I0.1198E-03 I0.1186E-03

69.0 I .0000E+00 I0.1977E-03 I0.1933E-03
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Table X

MAGNITUDE OF VECTOR POTENTIAL

TRIANGULAR CURRENT DISTRIBUTION

R= 5.0 M= 500 K63.

THETA FAR- ICF NUMERICAL
(DEG) FIELD I
15.0 0.0000E+00 I0.8399E-05 I0.8398E-05

18.0 0.0000E+00 J0.1643E-04 j0.1643E-04

21.0 0.0000E+00 J0.2686E-04 I0.2684E-04
24.0 j .0000E-s00 I0.3642E-04 I0.3640E-04

27.0 j .0000E-I00 I0.3960E-04 I0.3956E-04

30.0 0.0000E+00 I0.3154E-04 j0.3150E-04

33.0 I .0000E-I00 0.1466E-04 I0-1464E-04
36.0 I .0000E-I00 I0.1187E-04 I0.1187E-04
39.0 0.0000E+00 I0.1874E-04 j0.1872E-04

42.0 0.0000E+00 I0.3737E-04 I0.3734E-04
45.0 j .0000E+00 0.6036E-04 I0.6030E-04
48.0 J .0000E+00 I0.4889E-04 0.4883E-04

51.0 0.0000E+00 0.2449E-04 I0.2449E-04
54.0 0.0000E-f00 I0.5028E-04 I0.5019E-04

57.0 0.0000E+00 I0.7460E-04 I0.7441E-04

60.0 I .0000E+00 f0.1128E-03 0.1124E-03

63.0 I .0000E+00 j0.5399E-04 I0.5400E-04
66.0 0.0000E+00 I0.1198E-03 I0.1189E-03

69.0 I .0000E+00 I0.1977E-03 I0.1935E-03

110



* Table XI

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MAGNITUDE OF VECTOR POTENTIAL -
TRIANGUL.AR CURRENT DISTRIBUTION

R = 25.0 1M = 50 1' K = 63.

THETA FAR- ICF NUMERICAL
(DEG) FIELD

15.0 I0.1550E-05 0.1555E-05 I0.1449E-05
18.0 I0.3146E-05 I0.3152E-05 I0.2946E-05

21.0 0.5240E-05 I0.5245E-05 I0.4904E-05

24.0 I0.7213E-05 j0.7216E-05 I0.6759E-05
27.0 j0.7995E-05 I0.7992E-05 I0.7527E-05
30.0 0.6608E-05 I0.6596E-05 I0.6242E-05

33.0 0.3277E-05 I0.3262E-05 j0-3083E-05

36.0 10.2993E-06 0.5441E-06 I0.5145E-06
39.0 0.1092E-05 j0.1307E-05 I0.1247E-05
42.0 I0.6693E-05 I0.6729E-05 0.6462E-05

45.0 0.1258E-04 I0.1256E-04 I0.1211E-04
48.0 0.1154E-04 I 0.1147E-04 f 0.1111E-04

51.0 j0.3548E-05 j0.3581E-05 0.3481E-05

54.0 0.5141E-06 0 .2095E-05 I0.2036E-05

57.0 I0.1214E-04 J0.1228E-04 0.1204E-04

60.0 J0.2565E-04 0.2553E-04 I0.2510E-04
63.0 J0.1810E-04 I0.1780E-04 I0.1755E-04
66.0 I0.5830E-06 I0.4616E-05 I0.4572E-05

69.0 I0.1776E-04 I0.1918E-04 I0.1901E-04

------- -- -- -- --- -- -- -- -- - - --- -- -- -- -- --



~~-w-w-. w~ r~Tabl XII * .c. '- .- .

-------- - - - .- - .--- -- -- -- -- -- -- -- -- -- -- -- -- --

MAGNITUDE OF VECTOR POTENTIAL

TRIANGULAR CURRENT DISTRIBUTION

R= 25.0 1M= 100 jK= 63.

THETA FAR- ICF jNUMERICAL
(DEG) FIELD 1
15.0 J0.1550E-05 I0.1555E-05 I0.1524E-05

18.0 0.3146E-05 f0.3152E-05 I0.3100E-05
21.0 10.5240E-05 I0.5245E-05 j0.5168E-05

24.0 f0.7213E-05 I0.7216E-05 I0.7113E-05
27.0 0.7995E-05 f0.7992E-05 f0.7878E-05

------------------------ --------------- --------------- ---------------
30.0 0.6608E-05 I0.6596E-05 0.6518E-05

33.0 I0.3277E-05 I0.3262E-05 I0.3228E-05
36.0 0.2993E-06 I0.5441E-06 I0.5385E-06
39.0 0.1092E-05 I0.1307E-05 I0.1297E-05
42.0 I0.6693E-05 I0.6729E-05 I0.6672E-05
45.0 I0.125SE-04 I0.1256E-04 0.1245E-04

48.0 0.1154E-04 I0.1147E-04 0.1138E-04

51.0 0.3548E-05 0.3581E-05 I0.3552E-05

54.0 0.5141E-06 I 0.2095E-05 I0.2082E-05
57.0 I0.1214E-04 I0.1228E-04 I0.1222E-04

60.0 j0.2565E-04 I0.2553E-04 I0.2543E-04

63.0 I0.1810E-04 I0.1780E-04 I0.1773E-04

66.0 I0.5830E-06 I0.4616E-05 j0.4599E-05

69.0 I0.1776E-04 I0.1918E-04 I0.1912E-04
------------------------ --------------- --------------
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Table XIII

* MAGNITUDE OF VECTOR POTENTIAL

* ~TRIANGULA.R CURRENT DISTRIBUTION

R= 25.0 M= 500 IK= 63.

THETA FAR- ICF NUMERICAL
(DEG) FIELD I
15.0 0.1550E-05 I0.1555E-05 I0.1554E-05
18.0 f0.3146E-05 10.3152E-05 I0.3148E-05
21.0 0.5240E-05 I0.5245E-05 I0.5242E-05
24.0 I0.7213E-05 0.7216E-05 10.7214E-05
27.0 0.7995E-05 I0.7992E-05 I0.7985E-05

30.0 0.6608E-05 I0.6596E-05 I0.6591E-05
33.0 J0.3277E-05 I0.3262E-05 I0-3259E-05

------ - --------- --- --- -- -- -- - - - -- -- --- ---
36.0 j0.2993E-06 I0.5441E-06 j0-5480E-06

39.0 J0-1092E-05 I0.1307E-05 I0-1306E-05

42.0 0.6693E-05 I0-6729E-05 I0.6728E-05
45.0 0.125BE-04 0.1256E-04 I0.1256E-04 L
48.0 0.1154E-04 I0.1147E-04 I0.1147E-04
51.0 I0.3548E-05 J0.3581E-05 j0.3581E-05

-- 54.0 0.5141E-06 j0.2095E-05 I0.2093E-05
57.0 0.1214E-04 I0.1228E-04 J0.1228E-04

----------------------- --------------- --------------- ---------------
60.0 I0.2565E-04 I0.2553E-04 I0.2553E-04
63.0 I0-1810E-04 I0.1780E-04 I0.1779E-04

*66.0 0.5830E-06 I0.4616E-05 j0.4617E-05

*.69.0 I0.1776E-04 I0.1918E-04 I0.1916E-04
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Table XIV

----------------- --- - --- -- -- --- --- ---- --- ---
MAGNITUDE OF VECTOR POTENTIAL

TRIANGULAR CURRENT DISTRIBUTION

R = 50.0 1M = 50 1 K = 63.

THETA FAR- ICF NUMERICAL

(DEG) FIELD I
15.0 0.7748E-06 I0.7752E-06 j0.7084E-06

18.0 0-1573E-05 I0.1574E-05 I0.1468E-05
21.0 0-2620E-05 I0.2621E-05 I0.2448E-05

-------- --------------- --------------- -----------7
24.0 0-3606E-05 I0.3607E-05 I0.3395E-05

27.0 f0.3997E-05 I0.3997E-05 I0.3767E-05

30.0 I0.3304E-05 I0.3302E-05 I0.3112E-05
33.0 j0-1638E-05 I0-1636E-05 I0.1555E-05

36.0 0.1497E-06 I0.1877E-06 0.1700E-06

39.0 0.5458E-06 I0.5746E-06 I0.5530E-06

42.0 0-3347E-05 10.3351E-05 I0.3213E-05

45.0 0.6289E-05 j0.6286E-05 I0.6070E-05
48.0 J0.5771E-05 J0.5762E-05 J0.5591E-05
51.0 0.1774E-05 f0.177GE-05 I0.1738E-05

------- --------- --- --- ---- --- - - ---- --- ---
54.0 I0-2570E-06 I0.5693E-06 j0-5579E-06

57.0 0.6069E-05 J0.6087E-05 0-5953E-05

60.0 0-1283E-04 I0.1281E-04 f0.1259E-04
-- ----- ---- ----- --- --- ---- --- - - ---- --- ---

63.0 0 .9049E-05 0-9012E-05 I0.8885E-05
66.0 0-2915E-06 j0.1180E-05 j0.1162E-05

69.0 f0-8882E-05 f0.9064E-05 I0.8996E-05
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